CS 70Discrete Mathematics and Probability TheoryFall 2024Rao, HugDIS 3B

1 Modular Basics

Note 6

(a) $a \equiv b \pmod{m}$

i. a and b have the same remainder when divided by m

For the first two parts, select all options that are equivalent to the given statement:

ii. $m \mid a+b$

iii. a = b - km for some integer k.

(b)
$$a^k \equiv b^k \pmod{m}$$

i. $(a \mod m)^k \equiv (b \mod m)^k \pmod{m}$ ii. $a^{k \mod m} \equiv b^{k \mod m} \pmod{m}$

For the remainder, compute the last digit(s) of each given number:

(c) 11^{3142}

(d) 9⁹⁹⁹⁹

(e) 3⁶⁴¹

2 Modular Potpourri

Note 6

Prove or disprove the following statements:

(a) There exists some $x \in \mathbb{Z}$ such that $x \equiv 3 \pmod{16}$ and $x \equiv 4 \pmod{6}$.

(b) $2x \equiv 4 \pmod{12} \iff x \equiv 2 \pmod{12}$.

(c) $2x \equiv 4 \pmod{12} \iff x \equiv 2 \pmod{6}$.

3 Modular Inverses

Note 6 Recall the definition of inverses from lecture: let $a, m \in \mathbb{Z}$ and m > 0; if $x \in \mathbb{Z}$ satisfies $ax \equiv 1 \pmod{m}$, then we say x is an **inverse of** a **modulo** m.

Now, we will investigate the existence and uniqueness of inverses.

(a) Is 3 an inverse of 5 modulo 10?

(b) Is 3 an inverse of 5 modulo 14?

- (c) For all $n \in \mathbb{N}$, is 3 + 14n an inverse of 5 modulo 14?
- (d) Does 4 have an inverse modulo 8?
- (e) Suppose $x, x' \in \mathbb{Z}$ are both inverses of *a* modulo *m*. Is it possible that $x \not\equiv x' \pmod{m}$?

4 Fibonacci GCD

Note 6

The Fibonacci sequence is given by $F_n = F_{n-1} + F_{n-2}$, where $F_0 = 0$ and $F_1 = 1$. Prove that, for all $n \ge 1$, $gcd(F_n, F_{n-1}) = 1$.