
CS 70 Discrete Mathematics and Probability Theory
Fall 2024 Hug, Rao HW 14

1 Balls in Bins Estimation
Note 20 We throw n > 0 balls into m ≥ 2 bins. Let X and Y represent the number of balls that land in bin 1

and 2 respectively.

(a) Calculate E[Y | X ]. [Hint: Your intuition may be more useful than formal calculations.]

(b) What is L[Y | X ] (where L[Y | X ] is the best linear estimator of Y given X)? [Hint: Your
justification should be no more than two or three sentences, no calculations necessary! Think
carefully about the meaning of the conditional expectation.]

(c) Unfortunately, your friend is not convinced by your answer to the previous part. Compute
E[X ] and E[Y ].

(d) Compute Var(X).

(e) Compute cov(X ,Y ).

(f) Compute L[Y | X ] using the formula. Ensure that your answer is the same as your answer to
part (b).

Solution:

(a) E[Y | X = x] = (n− x)/(m− 1), because once we condition on x balls landing in bin 1, the
remaining n− x balls are distributed uniformly among the other m−1 bins. Therefore,

E[Y | X ] =
n−X
m−1

.

(b) We showed that E[Y | X ] is a linear function of X . Since E[Y | X ] is the best general estimator
of Y given X , it must also be the best linear estimator of Y given X , i.e. E[Y | X ] and L[Y | X ]

coincide.

(c) Let Xi be the indicator that the ith ball falls in bin 1. Then, X = ∑
n
i=1 Xi, and by linearity

of expectation, E[X ] = ∑
n
i=1E[Xi] = n/m, since there are n indicators and each ball has a

probability 1/m of landing in bin 1. By symmetry, E[Y ] = n/m as well.

(d) The number of balls that falls into the first bin is binomially distributed with parameters n
and 1/m. Hence the variance is n(1/m)(1−1/m).

(e) Let Xi be as before, and let Yi be the indicator that the ith ball falls into bin 2.

cov(X ,Y ) =
n

∑
i=1

n

∑
j=1

cov(Xi,Yj)

CS 70, Fall 2024, HW 14 1

https://www.eecs70.org/assets/pdf/notes/n20.pdf


We can compute cov(Xi,Yi) = E[XiYi]−E[Xi]E[Yi] = 0− (1/m)(1/m) = −1/m2 (note that
E[XiYi] = 0 because it is impossible for a ball to land in both bins 1 and 2). Also, we have
cov(Xi,Yj) = 0 because the indicator for the ith ball is independent of the indicator for the
jth ball when i ̸= j. Hence, cov(X ,Y ) = n(−1/m2) =−n/m2.

(f)

L[Y | X ] = E[Y ]+
cov(X ,Y )

var(X)
(X −E[X ])

=
n
m
+

−n/m2

n(1/m)(1−1/m)

(
X − n

m

)
=

n
m
− 1

m−1

(
X − n

m

)
=

mn−n−mX +n
m(m−1)

=
n−X
m−1

2 Analyze a Markov Chain
Note 22 Consider a Markov chain with the state diagram shown below where a,b ∈ (0,1).

0 1 21−a

a b

11−b

Here, we let X(n) denote the state at time n.

(a) Is this Markov chain irreducible? Is this Markov chain aperiodic? Justify your answers.

(b) Calculate P[X(1) = 1,X(2) = 0,X(3) = 0,X(4) = 1 | X(0) = 0].

(c) Calculate the invariant distribution. Do all initial distributions converge to this invariant
distribution? Justify your answer.

Solution:

(a) The Markov chain is irreducible because a,b ∈ (0,1). Also, P(0,0)> 0, so that

gcd{n > 0 | Pn(0,0)> 0}= gcd{1,2,3, . . .}= 1,

which shows that the Markov chain is aperiodic.

We can also notice from the definition of aperiodicity that if a Markov chain has a self loop
with nonzero probability, it is aperiodic. In particular, a self loop implies that the smallest
number of steps we need to take to get from a state back to itself is 1. In this case, since
P(0,0) > 0, we have a self loop with nonzero probability, which makes the Markov chain
aperiodic.
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(b) As a result of the Markov property, we know our state at timestep n depends only on timestep
n−1. Looking at the transition probabilities, we see that the final expression is

P(0,1)×P(1,0)×P(0,0)×P(0,1) = a(1−b)(1−a)a.

(c) The balance equations are{
π(0) = (1−a)π(0)+(1−b)π(1)
π(1) = aπ(0)+π(2)

=⇒

{
aπ(0) = (1−b)π(1)
π(1) = aπ(0)+π(2)

=⇒

{
aπ(0) = (1−b)π(1)
π(1) = a

(1−b
a π(1)

)
+π(2)

=⇒

{
aπ(0) = (1−b)π(1)
bπ(1) = π(2)

As a side note, these last equations express the equality of the probability of a jump from i to
i+1 and from i+1 to i, for i = 0 and i = 1, respectively. These relations are also called the
“detailed balance equations”.

From these equations we find successively that

π(1) =
a

1−b
π(0) π(2) = bπ(1) =

ab
1−b

π(0).

The normalization equation is

1 = π(0)+π(1)+π(2) = π(0)
(

1+
a

1−b
+

ab
1−b

)
1 = π(0)

(
1−b+a+ab

1−b

)
so that

π(0) =
1−b

1−b+a+ab
.

Thus,

π(0) =
1−b

1−b+a+ab
π(1) =

a
1−b+a+ab

π(2) =
ab

1−b+a+ab

Or in vector form,

π =
1

1−b+a+ab

[
1−b a ab

]
.

Since the Markov chain is irreducible and aperiodic, all initial distributions converge to this
invariant distribution by the fundamental theorem of Markov chains.
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3 A Bit of Everything
Note 22 Suppose that X0,X1, . . . is a Markov chain with finite state space S = {1,2, . . . ,n}, where n > 2,

and transition matrix P. Suppose further that

P(1, i) =
1
n

for all states i and

P( j, j−1) = 1 for all states j ̸= 1,

with P(i, j) = 0 everywhere else.

(a) Prove that this Markov chain is irreducible and aperiodic.

(b) Suppose you start at state 1. What is the distribution of T, where T is the number of transi-
tions until you leave state 1 for the first time?

(c) Again starting from state 1, what is the expected number of transitions until you reach state
n for the first time?

(d) Again starting from state 1, what is the probability you reach state n before you reach state
2?

(e) Compute the stationary distribution of this Markov chain.

Solution:

(a) For any two states i and j, we can consider the path (i, i− 1, . . . ,2,1, j), which has nonzero
probability of occurring. Thus, this chain is irreducible. To see that it is aperiodic, observe
that d(1) = 1, as we have self-loop from state 1 to itself.

(b) At any given transition, we leave state 1 with probability with probability n−1
n , independently

of any previous transition. Thus, the distribution is Geometric, with parameter n−1
n .

(c) Suppose that β (i) is the expected number of transitions necessary to reach state n for the first
time, starting from state i. We have the following first step equations:

β (1) = 1+
n

∑
j=1

1
n

β ( j),

β (i) = 1+β (i−1) for 1 < i < n, and
β (n) = 0.

We can simplify the second recurrence to

β (i) = i−1+β (1) for 1 < i < n.

Substituting this simplified recurrence into the first equation, we get that

β (1)= 1+
1
n

n−1

∑
i=1

(i−1+β (1))= 1+
1
n

n−1

∑
i=1

(i−1)+
1
n

n−1

∑
i=1

β (1)= 1+
(n−2)(n−1)

2n
+

n−1
n

β (1),
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which we can solve to get that

β (1) = n+
1
2
(n−1)(n−2) .

(d) Suppose that α(i) is the probability that we reach state n before we reach state 2, starting from
state i. One immediate observation we can make is that from any state i in {2, . . . ,n−1}, we
are guaranteed to see state 2 before state n, as we can only take the path (i, i− 1, . . . ,2,1).
Hence, α(i) = 0 if i ∈ {2, . . . ,n−1}. Moreover, α(n) = 1, so

α(1) =
n

∑
i=1

1
n

α(i) =
1
n

α(1)+
1
n
,

hence α(1) =
1

n−1
.

(e) We have the balance equations

π(i) =
1
n

π(1)+π(i+1) if i ̸= n, and

π(n) =
1
n

π(1).

We can collapse the first recurrence to

π(i) =
n− i

n
π(1)+π(n) =

n− i+1
n

π(1),

so we can express each stationary probability in terms of the stationary probability of state 1.
We can finish by using the normalization equation:

π(1)+π(2)+ · · ·+π(n) = 1 =⇒ 1
n

π(1)
n

∑
i=1

n− i+1 = 1.

The last sum can be rearranged to be the sum of the integers from 1 up to n, so we get that

π(1) =
2

n+1
=⇒ π =

2
n(n+1)

[
n n−1 · · · 1

]
.

4 Playing Blackjack
Note 22 Suppose you start with $1, and at each turn, you win $1 with probability p, or lose $1 with proba-

bility 1− p. You will continually play games of Blackjack until you either lose all your money, or
you have a total of n dollars.

(a) Formulate this problem as a Markov chain.
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(b) Let α(i) denote the probability that you end the game with n dollars, given that you started
with i dollars.

Notice that for 0 < i < n, we can write α(i+1)−α(i) = k(α(i)−α(i−1)). Find k.

(c) Using part (b), find α(i), where 0 ≤ i ≤ n. (You will need to split into two cases: p = 1
2 or

p ̸= 1
2 .)

Hint: Try to apply part (b) iteratively, and look at a telescoping sum to write α(i) in terms of
α(1). The formula for the sum of a finite geometric series may be helpful when looking at
the case where p ̸= 1

2 :
m

∑
k=0

ak =
1−am+1

1−a
.

Lastly, it may help to use the value of α(n) to find α(1) for the last few steps of the calcula-
tion.

(d) As n → ∞, what happens to the probability of ending the game with n dollars, given that you
start with i dollars, with the following values of p?

(i) p > 1
2

(ii) p = 1
2

(iii) p < 1
2

Solution:

(a) We have the following state transition diagram:

0 1 2 · · · n−2 n−1 n1 1

p p p p p

1− p1− p1− p1− p1− p

In particular, we have n+1 states, {0,1,2, . . . ,n}, where the transition probability from i to
i+ 1 is p, and the transition probability from i to i− 1 is 1− p. The transition probabilities
for i = 0 and i = n are edge cases, where we stay in place with probability 1.

(b) If we start with i dollars, this means that we start at state i. The next transition can either be
to state i+1 with probability p, or to state i−1 with probability 1− p. This means that we
have

α(i) = pα(i+1)+(1− p)α(i−1).

Here, a trick is to expand α(i) = pα(i)+(1− p)α(i). Substituting this in, we can rewrite

pα(i)+(1− p)α(i) = pα(i+1)+(1− p)α(i−1)
(1− p)(α(i)−α(i−1)) = p(α(i+1)−α(i))

α(i+1)−α(i) =
1− p

p
(α(i)−α(i−1))
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(c) Now that we have a relationship between α(i+1)−α(i) and α(i)−α(i−1), notice that we
can iteratively apply the recurrence to get

α(i+1)−α(i) =
1− p

p
(α(i)−α(i−1))

=

(
1− p

p

)2

(α(i−1)−α(i−2))

...

=

(
1− p

p

)i

(α(1)−α(0))

=

(
1− p

p

)i

α(1)

since α(0) = 0 (once we lose all our money, we stop and can never reach n).

Further, notice that we have the telescoping sum

[α(i)−α(i−1)]+ [α(i−1)−α(i−2)]+ · · ·+[α(1)−α(0)] = α(i)−α(0) = α(i).

This means that we have the summation

α(i) =
i−1

∑
k=0

(α(k+1)−α(k))

=
i−1

∑
k=0

(
1− p

p

)k

α(1)

= α(1)
i−1

∑
k=0

(
1− p

p

)k

= α(1) ·
1−

(
1−p

p

)i

1− 1−p
p

[Note that if p = 1
2 , the last step is not valid; in fact, since 1−p

p = 1, this means that α(i) =
iα(1). We’ll come back to this case later.]

The previous formula applies for all 0 < i ≤ n, so we can let i = n and simplify to find α(1):

1 = α(n) = α(1) ·
1−

(
1−p

p

)n

1− 1−p
p

1− 1−p
p

1−
(

1−p
p

)n = α(1)
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Plugging this back in for α(i), we have

α(i) =
1− 1−p

p

1−
(

1−p
p

)n ·
1−

(
1−p

p

)i

1− 1−p
p

=
1−

(
1−p

p

)i

1−
(

1−p
p

)n .

Going back to the case where p = 1
2 , we saw that the summation simplifies to α(i) = iα(1).

Since α(n) = 1, this means that 1 = nα(1), or α(1) = 1
n . This means that we have

α(i) = iα(1) =
i
n
.

Together, we have the following formula for any 0 ≤ i ≤ n:

α(i) =


1−

(
1−p

p

)i

1−
(

1−p
p

)n p ̸= 1
2

i
n p = 1

2

.

(d) (i) If p > 1
2 , then 1−p

p < 1, and as n → ∞, the
(

1−p
p

)n
term in the denominator vanishes.

This means that all we’re left with is the numerator, and as such

lim
n→∞

α(i) = 1−
(

1− p
p

)i

.

(ii) If p = 1
2 , then we know that α(i) = i

n . As n → ∞, this fraction goes to 0, and we have

lim
n→∞

α(i) = 0.

(iii) If p < 1
2 , then 1−p

p > 1, and as n → ∞, the
(

1−p
p

)n
term in the denominator blows up.

This means that the denominator tends to −∞, while the numerator remains bounded
for any fixed i. This means that the entire fraction tends to 0, i.e,

lim
n→∞

α(i) = 0.

Note that this problem shows that, even in the case of a fair game (i.e., p = 1
2 ), the probability that

a gambler wins $n before going broke tends to zero as n → ∞. This is one version of the so-called
“Gambler’s Ruin” problem. Only in the case where p > 1

2 , i.e., when the game is strictly in the
gambler’s favor, does the gambler come out on top with positive probability.
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