Note 20

CS 70 Discrete Mathematics and Probability Theory
Fall 2024 Hug, Rao HW 14

1 Balls in Bins Estimation

We throw n > 0 balls into m > 2 bins. Let X and Y represent the number of balls that land in bin 1
and 2 respectively.

(a) Calculate E[Y | X|. [Hint: Your intuition may be more useful than formal calculations.]

(b) What is L[Y | X] (where L[Y | X] is the best linear estimator of Y given X)? [Hint: Your
justification should be no more than two or three sentences, no calculations necessary! Think
carefully about the meaning of the conditional expectation.]

(c) Unfortunately, your friend is not convinced by your answer to the previous part. Compute
E[X] and E[Y].

(d) Compute Var(X).
(e) Compute cov(X,Y).

(f) Compute L[Y | X] using the formula. Ensure that your answer is the same as your answer to
part (b).

Solution:

(a) E[Y | X =x] = (n—x)/(m— 1), because once we condition on x balls landing in bin 1, the
remaining n — x balls are distributed uniformly among the other m — 1 bins. Therefore,
n—X

E[Y | X] = ~—.

(b) We showed that E[Y | X] is a linear function of X. Since E[Y | X] is the best general estimator
of Y given X, it must also be the best linear estimator of Y given X, i.e. E[Y | X] and L[Y | X]
coincide.

(c) Let X; be the indicator that the ith ball falls in bin 1. Then, X = }? ,X;, and by linearity
of expectation, E[X] = Y" | E[X;] = n/m, since there are n indicators and each ball has a
probability 1/m of landing in bin 1. By symmetry, E[Y] = n/m as well.

(d) The number of balls that falls into the first bin is binomially distributed with parameters n
and 1/m. Hence the variance is n(1/m)(1 —1/m).

(e) Let X; be as before, and let Y; be the indicator that the ith ball falls into bin 2.

cov(X,Y) iicov X,,Y
i=1j=1
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We can compute cov(X;,Y;) = E[X;Y;] — E[X;|E[Y;] = 0 — (1/m)(1/m) = —1/m? (note that
E[X;Y;] = 0 because it is impossible for a ball to land in both bins 1 and 2). Also, we have
cov(X;,Y;) = 0 because the indicator for the ith ball is independent of the indicator for the
jth ball when i # j. Hence, cov(X,Y) = n(—1/m?) = —n/m?.
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2 Analyze a Markov Chain

Note 22 Consider a Markov chain with the state diagram shown below where a,b € (0,1).

Here, we let X (n) denote the state at time n.
(a) Is this Markov chain irreducible? Is this Markov chain aperiodic? Justify your answers.
(b) Calculate P[X(1) =1,X(2) =0,X(3) =0,X(4)=1|X(0) =0].
(c) Calculate the invariant distribution. Do all initial distributions converge to this invariant
distribution? Justify your answer.
Solution:

(a) The Markov chain is irreducible because a,b € (0,1). Also, P(0,0) > 0, so that
ged{n>0]P"(0,0) >0} =gecd{1,2,3,...} =1,

which shows that the Markov chain is aperiodic.

We can also notice from the definition of aperiodicity that if a Markov chain has a self loop
with nonzero probability, it is aperiodic. In particular, a self loop implies that the smallest
number of steps we need to take to get from a state back to itself is 1. In this case, since
P(0,0) > 0, we have a self loop with nonzero probability, which makes the Markov chain
aperiodic.
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(b) As aresult of the Markov property, we know our state at timestep n depends only on timestep
n — 1. Looking at the transition probabilities, we see that the final expression is

P(0,1) x P(1,0) x P(0,0) x P(0,1) = a(1 — b)(1 —a)a.

(c) The balance equations are

n(0)=(1—-a)x(0)+ (1 -b)x(1) . arn(0) = (1—->b)x(1)
n(l)=an(0)+m(2)

am(0) = (1 —b)x(1)
— \ba(l) = 7(2)

As a side note, these last equations express the equality of the probability of a jump from i to
i+ 1 and fromi+1toi fori =0 andi= 1, respectively. These relations are also called the
“detailed balance equations”.

From these equations we find successively that

The normalization equation is

1:n®%HdU+”@*:Mm<L+ a'+ab)
1 =m(0) (M)

1-b
so that 1—b
=—
O =1 rarab
Thus,
1-b a ab
O)=———— Ne ———— N
7(0) 1—b+a+ab (1) l—b+a+ab 7(2) l—-b+a+ab
Or in vector form,
1
) .
& 1—b+a—|—ab[ b a ab}

Since the Markov chain is irreducible and aperiodic, all initial distributions converge to this
invariant distribution by the fundamental theorem of Markov chains.
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3 A Bit of Everything

Note 22 Suppose that Xp, X, ... is a Markov chain with finite state space S = {1,2,...,n}, where n > 2,
and transition matrix P. Suppose further that

P(1,i)=— for all states i and
P(j?j_ 1)

with P(i, j) = 0 everywhere else.

1
n
1 forall states j # 1,

(a) Prove that this Markov chain is irreducible and aperiodic.

(b) Suppose you start at state 1. What is the distribution of 7, where T is the number of transi-
tions until you leave state 1 for the first time?

(c) Again starting from state 1, what is the expected number of transitions until you reach state
n for the first time?

(d) Again starting from state 1, what is the probability you reach state n before you reach state
27

(e) Compute the stationary distribution of this Markov chain.
Solution:

(a) For any two states i and j, we can consider the path (i,i—1,...,2,1, j), which has nonzero
probability of occurring. Thus, this chain is irreducible. To see that it is aperiodic, observe
that d(1) = 1, as we have self-loop from state 1 to itself.

(b) Atany given transition, we leave state 1 with probability with probability *- 1=l independently
of any previous transition. Thus, the distribution is Geometric, with parameter = 1

(c) Suppose that (i) is the expected number of transitions necessary to reach state n for the first
time, starting from state i. We have the following first step equations:

i !

- n

‘]7

1+B(i—1) forl<i<n,and
B(n)=0.
We can simplify the second recurrence to
B(i)=i—1+B(1) forl<i<n.

Substituting this simplified recurrence into the first equation, we get that

B(l):1+1ri‘j(z‘—1+ﬁ(1)):1+1nEl i—1 +1nzlﬁ (==l n-l
" i=1

i=1

2n n
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which we can solve to get that

B(1) = n+%(n—1)(n—2).

(d) Suppose that a (i) is the probability that we reach state n before we reach state 2, starting from

state i. One immediate observation we can make is that from any state i in {2,...,n— 1}, we

are guaranteed to see state 2 before state n, as we can only take the path (i,i —1,...,2,1).
Hence, o(i) =0ifi € {2,...,n—1}. Moreover, a(n) = 1, so

n

=)

i=1

1
a(i )+—

S| =

1

hence (1) = T
n_

(e) We have the balance equations

(i) = “2(1) 4 7(i+1) ifi+n,and

We can collapse the first recurrence to

() = "L a() 4 () = L,

n n

so we can express each stationary probability in terms of the stationary probability of state 1.
We can finish by using the normalization equation:

n(1)+rnR2)+--+nn) =1 = n Zn—l+1—1

The last sum can be rearranged to be the sum of the integers from 1 up to n, so we get that

[n n—1 -- 1].

n+1 n(n+1)

4 Playing Blackjack

Note 22 Suppose you start with $1, and at each turn, you win $1 with probability p, or lose $1 with proba-
bility 1 — p. You will continually play games of Blackjack until you either lose all your money, or
you have a total of n dollars.

(a) Formulate this problem as a Markov chain.
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(b) Let a(i) denote the probability that you end the game with n dollars, given that you started
with 7 dollars.

Notice that for 0 < i < n, we can write o¢(i+ 1) — ot(i) = k(a(i) — a(i—1)). Find k.

(c) Using part (b), find (i), where 0 < i < n. (You will need to split into two cases: p = % or

P#3)
Hint: Try to apply part (b) iteratively, and look at a telescoping sum to write (i) in terms of

o(1). The formula for the sum of a finite geometric series may be helpful when looking at

the case where p # %:
m+1

Z 4 1 —a"
1-a

Lastly, it may help to use the value of o (n) to find a(1) for the last few steps of the calcula-

tion.

(d) Asn — oo, what happens to the probability of ending the game with n dollars, given that you
start with i dollars, with the following values of p?

i) p>3
(i) p=7
(iii) p <3
Solution:

(a) We have the following state transition diagram:

P p p p p
/\A
>~
1 l—p l—p l—p 1—p

In particular, we have n+ 1 states, {0,1,2,...,n}, where the transition probability from i to
i+ 11s p, and the transition probability from i to i — 1 is 1 — p. The transition probabilities
for i = 0 and i = n are edge cases, where we stay in place with probability 1.

(b) If we start with i dollars, this means that we start at state i. The next transition can either be
to state i 4 1 with probability p, or to state i — 1 with probability 1 — p. This means that we
have

a(i) =pa(i+1)+(1-pla(i-1).
(

Here, a trick is to expand a (i) = po(i) + (1 — p)a(i). Substituting this in, we can rewrite

po(i+1)+(1—-pla@i-1)
( (i+1) = i)

—L(a)—a(i-1)

po(i) + (1 —p)a(i)
(1-p)(a@i) —a@-1))
)

a(i+1)—oa(

P
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(c) Now that we have a relationship between a(i+ 1) — a(i) and a(i) — (i — 1), notice that we
can iteratively apply the recurrence to get

ali+1)—ali) = =P (i) - ali—1))

S

- (1_—p>2(o¢(i— 1) —a(i—2))

i (20) (et ao)

p

(5o

since o(0) = 0 (once we lose all our money, we stop and can never reach n).

Further, notice that we have the telescoping sum
[a(i)—oa(i—1)]+[a(i—1)—a(i—2)]+ -+ [a(l) —a(0)] = a(i) — a(0) = a(i).

This means that we have the summation

[Note that if p = % the last step is not valid; in fact, since I=r _ 1, this means that o(i) =

p
ioe(1). We’ll come back to this case later.]

The previous formula applies for all 0 < i < n, so we can let i = n and simplify to find c¢(1):

1 =a(n) :a(l)-ﬁ

|- L

1-Lr

P =a(l)
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Plugging this back in for a (i), we have

| _lp 1_<1_P>i 1_<1_P>i
(X(i) = £ ne ! = r -
1 (1;17) -2 g (1—_P)
P P
Going back to the case where p = 3, we saw that the summation simplifies to o(i) = ia(1).
Since &(n) = 1, this means that 1 = na(1), or &t(1) = 1. This means that we have

ali) = ia(1) :é.

Together, we have the following formula for any 0 <i < n:

()
(52 P7

=

o(i) =

p

S~ —
2l—

p:

n
@ @@ Ifp> %, then 1*7” < 1, and as n — oo, the <177p> term in the denominator vanishes.
This means that all we’re left with is the numerator, and as such

lim a(i)=1- (I—_p)’

n—yoo p

(i) If p = 3, then we know that a(i) = L. As n — oo, this fraction goes to 0, and we have

lim a(i) = 0.

n—oo

n
(i) If p < % then I_Tp > 1, and as n — oo, the (%) term in the denominator blows up.

This means that the denominator tends to —eo, while the numerator remains bounded
for any fixed i. This means that the entire fraction tends to 0, i.e,

lim a(i) = 0.

n—oo

Note that this problem shows that, even in the case of a fair game (i.e., p = %), the probability that
a gambler wins $n before going broke tends to zero as n — oo. This is one version of the so-called
“Gambler’s Ruin” problem. Only in the case where p > % 1.e., when the game is strictly in the
gambler’s favor, does the gambler come out on top with positive probability.
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