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Some Practice.

How many orderings of letters of CAT?

3 ways to choose first letter, 2 ways for second, 1 for last.

=⇒ 3×2×1 = 3! orderings

How many orderings of the letters in ANAGRAM?

Ordered, except for A!

total orderings of 7 letters. 7!
total “extra counts” or orderings of three A’s? 3!

Total orderings? 7!
3!

How many orderings of MISSISSIPPI?

4 S’s, 4 I’s, 2 P’s.
11 letters total.

11! ordered objects.
4!×4!×2! ordered objects per “unordered object”

=⇒ 11!
4!4!2! .
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Summary.

First rule: n1 ×n2 · · ·×n3.

k Samples with replacement from n items: nk .
Sample without replacement: n!

(n−k)! = n(n−1) · · ·(n−k +1)

Second rule:
When order doesn’t matter (sometimes) can divide...

Sample without replacement and order doesn’t matter:(n
k

)
= n!

(n−k)!k ! . “n choose k ”

One-to-one rule: equal in number if one-to-one correspondence.
Bijection!

Sample k times n with replacement and order doesn’t matter:(k+n−1
n−1

)
.
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Sampling...

Sample k items out of n

Without replacement:
Order matters: n×n−1×n−2 . . . ×n−k +1 = n!

(n−k)!
Order does not matter:

Second Rule: divide by number of orders – “k !”
=⇒ n!

(n−k)!k ! .
“n choose k ”

With Replacement.
Order matters: n×n× . . .n = nk

Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!
Different number of unordered elts map to each unordered elt.

Unordered elt: 1,2,3 3! ordered elts map to it.
Unordered elt: 1,2,2 3!

2! ordered elts map to it.

How do we deal with this mess??
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Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.

Alice gets 3, Bob gets 1, Eve gets 1: (A,A,A,B,E).

Separate Alice’s dollars from Bob’s and then Bob’s from Eve’s.

Five dollars are five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split “is” a sequence of stars and bars.
Each sequence of stars and bars “is” a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!
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Stars and Bars.

How many different 5 star and 2 bar diagrams?

| ⋆ | ⋆ ⋆ ⋆ ⋆.

7 positions in which to place the 2 bars.

Alice: 0; Bob 1; Eve: 4
| ⋆ | ⋆ ⋆ ⋆ ⋆.
Bars in first and third position.

Alice: 1; Bob 4; Eve: 0
⋆ | ⋆ ⋆ ⋆ ⋆ |.
Bars in second and seventh position.(7

2

)
ways to do so and(7

2

)
ways to split 5 dollars among 3 people.
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Stars and Bars.

Ways to add up n numbers to sum to k?

or

“ k from n with replacement where order doesn’t matter.”

In general, k stars n−1 bars.

⋆⋆ |⋆ | · · · |⋆⋆.

n+k −1 positions from which to choose n−1 bar positions.(
n+k −1

n−1

)

Or: k unordered choices from set of n possibilities with replacement.
Sample with replacement where order doesn’t matter.
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n−1

)
.
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Bijection: sums to ’k’ → stars and bars.

S = {(n1,n2,n3) : n1 +n2 +n3 = 5}

T = {s ∈ {′|′,′ ⋆′} : |s|= 7,number of bars in s = 2}
f ((n1,n2,n3)) = ⋆n1 ′|′ ⋆n2 ′|′ ⋆n3

Bijection:
argument: unique (n1,n2,n3) from any s.

|S|= |T |=
(7

2

)
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Stars and Bars Poll

Mark whats correct.
(A) ways to split n dollars among k:

(n+k−1
k−1

)
(B) ways to split k dollars among n:

(k+n−1
n−1

)
(C) ways to split 5 dollars among 3:

(7
5

)
(D) ways to split 5 dollars among 3:

(5+3−1
3−1

)

All correct.
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Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers “exclusive” or One Joker “exclusive” or Two Jokers

(52
5

)
+
(52

4

)
+
(52

3

)
.

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands?

Choose 4 cards plus one of 2 jokers!

(52
5

)
+2∗

(52
4

)
+
(52

3

)
Wait a minute! Same as choosing 5 cards from 54 or(54

5

)
Theorem:

(54
5

)
=
(52

5

)
+2∗

(52
4

)
+
(52

3

)
.

Algebraic Proof: Why? Just why? Especially on Thursday!
Already have a combinatorial proof.
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Proof: How many subsets of size k?
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How many subsets of size k?
Choose a subset of size n−k

and what’s left out is a subset of size k .
Choosing a subset of size k is same

as choosing n−k elements to not take.
=⇒
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)
subsets of size k .
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1 3 3 1

1 4 6 4 1
Row n: coefficients of (a+b)n = (a+b)(a+b) · · ·(a+b).

Foil (4 terms) on steroids:
(a+b)2 = a2 +ab+ba+b2

aaa+aab+aba+abb+baa+bab+bba+bbb.
2n terms: choose 1 or x from each term (1+x).
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Combinatorial Proofs.

Theorem:
(n+1

k

)
=
(n

k

)
+
( n

k−1

)
.

Proof: How many size k subsets of n+1?

(n+1
k

)
.

How many size k subsets of n+1?
How many contain the first element?
Chose first element, need k −1 more from remaining n elements.
=⇒

( n
k−1

)
How many don’t contain the first element ?
Need to choose k elements from remaining n elts.
=⇒

(n
k

)
Sum Rule: size of union of disjoint sets of objects.

Without and with first element → disjoint.

So,
( n

k−1

)
+
(n

k

)
=
(n+1

k

)
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)
such subsets.

Add them up to get the total number of subsets of size k
which is also
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Binomial Theorem: x = 1

Theorem: 2n =
(n

n

)
+
( n

n−1

)
+ · · ·+

(n
0

)

Proof: How many subsets of {1, . . . ,n}?
Construct a subset with sequence of n choices:

element i is in or is not in the subset: 2 poss.
First rule of counting: 2×2 · · ·×2 = 2n subsets.

How many subsets of {1, . . . ,n}?(n
i

)
ways to choose i elts of {1, . . . ,n}.

Sum over i to get total number of subsets..which is also 2n.
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Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |
Used to reason about all subsets

by adding number of subsets of size 1, 2, 3,. . .

Also reasoned about subsets that contained
or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T , |S∪T |= |S|+ |T |− |S∩T |.

T ST S
In T . =⇒ |T |

T S In S. =⇒ + |S|
Elements in S∩T are counted twice.

S∩T
Subtract. =⇒ −|S∩T |

|S∪T |= |S|+ |T |− |S∩T |



Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |
Used to reason about all subsets

by adding number of subsets of size 1, 2, 3,. . .

Also reasoned about subsets that contained
or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T , |S∪T |= |S|+ |T |− |S∩T |.

T ST S
In T . =⇒ |T |

T S In S. =⇒ + |S|
Elements in S∩T are counted twice.

S∩T
Subtract. =⇒ −|S∩T |

|S∪T |= |S|+ |T |− |S∩T |



Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |
Used to reason about all subsets

by adding number of subsets of size 1, 2, 3,. . .

Also reasoned about subsets that contained
or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T , |S∪T |= |S|+ |T |− |S∩T |.

T ST S
In T . =⇒ |T |

T S In S. =⇒ + |S|
Elements in S∩T are counted twice.

S∩T
Subtract. =⇒ −|S∩T |

|S∪T |= |S|+ |T |− |S∩T |



Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |
Used to reason about all subsets

by adding number of subsets of size 1, 2, 3,. . .

Also reasoned about subsets that contained
or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T , |S∪T |= |S|+ |T |− |S∩T |.

T S

T S
In T . =⇒ |T |

T S In S. =⇒ + |S|
Elements in S∩T are counted twice.

S∩T
Subtract. =⇒ −|S∩T |

|S∪T |= |S|+ |T |− |S∩T |



Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |
Used to reason about all subsets

by adding number of subsets of size 1, 2, 3,. . .

Also reasoned about subsets that contained
or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T , |S∪T |= |S|+ |T |− |S∩T |.

T ST S
In T . =⇒ |T |

T S In S. =⇒ + |S|
Elements in S∩T are counted twice.

S∩T
Subtract. =⇒ −|S∩T |

|S∪T |= |S|+ |T |− |S∩T |



Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |
Used to reason about all subsets

by adding number of subsets of size 1, 2, 3,. . .

Also reasoned about subsets that contained
or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T , |S∪T |= |S|+ |T |− |S∩T |.

T ST S
In T . =⇒ |T |

T S In S. =⇒ + |S|

Elements in S∩T are counted twice.

S∩T
Subtract. =⇒ −|S∩T |

|S∪T |= |S|+ |T |− |S∩T |



Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |
Used to reason about all subsets

by adding number of subsets of size 1, 2, 3,. . .

Also reasoned about subsets that contained
or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T , |S∪T |= |S|+ |T |− |S∩T |.

T ST S
In T . =⇒ |T |

T S In S. =⇒ + |S|
Elements in S∩T are counted twice.

S∩T

Subtract. =⇒ −|S∩T |

|S∪T |= |S|+ |T |− |S∩T |



Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |
Used to reason about all subsets

by adding number of subsets of size 1, 2, 3,. . .

Also reasoned about subsets that contained
or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T , |S∪T |= |S|+ |T |− |S∩T |.

T ST S
In T . =⇒ |T |

T S In S. =⇒ + |S|
Elements in S∩T are counted twice.

S∩T
Subtract. =⇒ −|S∩T |

|S∪T |= |S|+ |T |− |S∩T |



Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |
Used to reason about all subsets

by adding number of subsets of size 1, 2, 3,. . .

Also reasoned about subsets that contained
or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T , |S∪T |= |S|+ |T |− |S∩T |.

T ST S
In T . =⇒ |T |

T S In S. =⇒ + |S|
Elements in S∩T are counted twice.

S∩T
Subtract. =⇒ −|S∩T |

|S∪T |= |S|+ |T |− |S∩T |



Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |
Used to reason about all subsets

by adding number of subsets of size 1, 2, 3,. . .

Also reasoned about subsets that contained
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Inclusion/Exclusion Rule: For any S and T ,
|S∪T |= |S|+ |T |− |S∩T |.
Example: How many 10-digit phone numbers have 7 as their first or
second digit?

S = phone numbers with 7 as first digit.|S|= 109

T = phone numbers with 7 as second digit. |T |= 109.

S∩T = phone numbers with 7 as first and second digit. |S∩T |= 108.

Answer: |S|+ |T |− |S∩T |= 109 +109 −108.
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Inclusion/Exclusion

|A1 ∪·· ·∪An|=
∑i |Ai |−∑i ,j |Ai ∩Aj |+∑i ,j ,k |Ai ∩Aj ∩Ak | · · ·(−1)n|A1 ∩·· ·An|.

Idea: For n = 3 how many times is an element counted?
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x counted once for |Ai | and once for |Aj |.
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Total: 2 -1 = 1.

Consider x ∈ A1 ∩A2 ∩A3
x counted once in each term: |A1|, |A2|, |A3|.
x subtracted once in terms: |A1 ∩A3|, |A1 ∩A2|, |A2 ∩A3|.
x added once in |A1 ∩A2 ∩A3|.

Total: 3 - 3 + 1 = 1.

Formulaically: x is in intersection of three sets.(3
1

)
for terms of form |Ai |,

(3
2

)
for terms of form |Ai ∩Aj |.(3

3

)
for terms of form |Ai ∩Aj ∩Ak |.
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−
(3
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Binomial Theorem:
(x +y)m =

(m
0

)
xm +

(m
1

)
xm−1y +

(m
2

)
xm−2y2 + · · ·

(m
m

)
ym.

Proof: m factors in product: (x +y)(x +y) · · ·(x +y).
Get a term xm−iy i by choosing i factors to use for y .

are
(m

i
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ways to choose factors where y is provided.

For x = 1,y =−1,
0 = (1−1)m =
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Summary.

First Rule of counting:

Objects from a sequence of choices:
ni possibilitities for i th choice : n1 ×n2 ×·· ·×nk objects.

Second Rule of counting: If order does not matter.
Count with order: Divide number of orderings. Typically:

(n
k

)
.

Stars and Bars: Sample k objects with replacement from n.
Order doesn’t matter: Typically:

(n+k−1
n−1

)
=
(n+k−1

k

)
.

Inclusion/Exclusion: two sets of objects.
Add number of each subtract intersection of sets.

Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.
Pascal’s Triangle Example:

(n+1
k

)
=
( n

k−1

)
+
(n

k

)
.

RHS: Number of subsets of n+1 items size k .
LHS:

( n
k−1

)
counts subsets of n+1 items with first item.(n

k

)
counts subsets of n+1 items without first item.

Disjoint – so add!
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Poll: How big is infinity?

Mark what’s true.
(A) There are more real numbers than natural numbers.
(B) There are more rational numbers than natural numbers.
(C) There are more integers than natural numbers.
(D) pairs of natural numbers >> natural numbers.
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Two sets are the same size?

(A) Bijection between the sets.
(B) Count the objects and get the same number. same size.
(C) Counting to infinity is hard.

(A), (B).
(C)?
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Countable.

How to count?

0, 1, 2, 3, . . .

The Counting numbers.
The natural numbers! N

Definition:
S is countable if there is a bijection between S and some subset of
N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.
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Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.



Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:

Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.



Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,

output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.



Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.



Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.



Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:

Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.



Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.

It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.



Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.

There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.



Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.

So it is countably infinite.

All countably infinite sets have the same cardinality.



Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.



Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.



Enumeration example.

All binary strings.

B = {0,1}∗.
B = {φ ,0,1,00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.
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More fractions?

Enumerate the rational numbers in order...

0, . . . ,1/2, ..

Where is 1/2 in list?

After 1/3, which is after 1/4, which is after 1/5...

A thing about fractions:
any two fractions has another fraction between it.

Can’t even get to “next” fraction!

Can’t list in “order”.
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Pairs of natural numbers.

Consider pairs of natural numbers: N ×N

E.g.: (1,2), (100,30), etc.

For finite sets S1 and S2,
then S1 ×S2
has size |S1|× |S2|.
So, N ×N is countably infinite squared ???
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Pairs of natural numbers.

Enumerate in list:

(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), . . . ...
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3

0 1 2 3 4
· · · · ·
· · · · ·
· · · · ·
· · · · ·

The pair (a,b), is in first ≈ (a+b+1)(a+b)/2 elements of list!
(i.e., “triangle”).

Countably infinite.

Same size as the natural numbers!!
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Poll.

Enumeration to get bijection with naturals?

(A) Integers: First all negatives, then positives.
(B) Integers: By absolute value, break ties however.
(C) Pairs of naturals: by sum of values, break ties however.
(D) Pairs of naturals: by value of first element.
(E) Pairs of integers: by sum of values, break ties.
(F) Pairs of integers: by sum of absolute values, break ties.

(B),(C), (F).



Poll.

Enumeration to get bijection with naturals?

(A) Integers: First all negatives, then positives.
(B) Integers: By absolute value, break ties however.
(C) Pairs of naturals: by sum of values, break ties however.
(D) Pairs of naturals: by value of first element.
(E) Pairs of integers: by sum of values, break ties.
(F) Pairs of integers: by sum of absolute values, break ties.

(B),(C), (F).



Poll.

Enumeration to get bijection with naturals?

(A) Integers: First all negatives, then positives.
(B) Integers: By absolute value, break ties however.
(C) Pairs of naturals: by sum of values, break ties however.
(D) Pairs of naturals: by value of first element.
(E) Pairs of integers: by sum of values, break ties.
(F) Pairs of integers: by sum of absolute values, break ties.

(B),(C), (F).



Rationals?

Positive rational number.

Lowest terms: a/b
a,b ∈ N
with gcd(a,b) = 1.

Infinite subset of N ×N.

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.

First negative, then nonegative ??? No!

Repeatedly and alternatively take one from each list.
Interleave Streams in 61A

The rationals are countably infinite.
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Real numbers..

Real numbers are same size as integers?



The reals.

Are the set of reals countable?

Lets consider the reals [0,1].

Each real has a decimal representation.
.500000000... (1/2)
.785398162... π/4
.367879441... 1/e
.632120558... 1−1/e
.345212312... Some real number
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Diagonalization.

If countable, there a listing, L contains all reals.

For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...
...

Construct “diagonal” number: .77677 . . .

Diagonal Number: Digit i is 7 if number i ’s i th digit is not 7
and 6 otherwise.

Diagonal number for a list differs from every number in list!
Diagonal number not in list.

Diagonal number is real.

Contradiction!

Subset [0,1] is not countable!!
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Diagonalization.

1. Assume that a set S can be enumerated.

2. Consider an arbitrary list of all the elements of S.

3. Use the diagonal from the list to construct a new element t .

4. Show that t is different from all elements in the list
=⇒ t is not in the list.

5. Show that t is in S.

6. Contradiction.
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Another diagonalization.
The set of all subsets of N.

Example subsets of N: {0}, {0, . . . ,7},
evens, odds, primes,

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If i th set in L does not contain i , i ∈ D.

otherwise i ̸∈ D.

D is different from i th set in L for every i .
=⇒ D is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of N is not countable.
(The set of all subsets of S, is the powerset of N.)
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Cardinalities of uncountable sets?
Cardinality of [0,1] smaller than all the reals?

f : R+ → [0,1].

f (x) =
{

x + 1
2 0 ≤ x ≤ 1/2

1
4x x > 1/2

One to one. x ̸= y
If both in [0,1/2], a shift =⇒ f (x) ̸= f (y).
If neither in [0,1/2] a division =⇒ f (x) ̸= f (y).
If one is in [0,1/2] and one isn’t, different ranges =⇒ f (x) ̸= f (y).
Bijection!

[0,1] is same cardinality as nonnegative reals!
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Rao is freaked out.

Are real numbers even real?

Almost all real numbers can’t be described.

π?
The ratio of the perimeter of a circle to its diameter.

e? Transendental number.
limn→∞(1+1/n)n.

√
2? Algebraic number.
A solution of x2 = 2.

Really, rationals seem fine for... say... calculus.

limn→∞ ∑
n
i=0

(b−a)
n f (xi), where xi = a+ i × (b−a)/n.

So why real numbers?∫ b
a f (x)dx is beautiful, succint notation

for a beautiful, succint, powerful idea.

What’s the idea? Area.
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Gödel. 1940.
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If math doesn’t contain a contradiction.

This statement is a lie.

Is the statement above true?
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Who shaves the barber?

Self reference.

Can a program refer to a program?

Can a program refer to itself?

Uh oh....
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