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Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol — “> 18"

“< 18" = Don’t Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

Propositional Forms: AV, -, P = Q=-PV Q.

Truth Table. Putting together identities. (E.g., cases, substitution.)
Predicates, P(x), and quantifiers. Vx, P(x).

DeMorgan’s: —(PVvQ)=-PA-Q. =Vx,P(x)=3x,-P(x).



CS70: Lecture 2. QOutline.

Today: Proofs!!!

1.

0D

5.

By Example.

Direct. (Prove P = Q.)

by Contraposition (Prove P = Q)
by Contradiction (Prove P.)

by Cases

If time: discuss induction.
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How to prove existential statement?

Give an example. (Sometimes called “"proof by example.”)
Theorem: (3x € N)(x = x?)

Pf:0=02=0

Often used to disprove claim.

Homework.
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(B) There exists k € Z, with b= ka.
(C) There exists k € N, with b = ka.
(D) There exists k € Z, with k = ab.
(E) adivides b

Incorrect: (C) sufficient not necessary. (A) Wrong way. (D) the
product is an integer.

Correct: (B) and (E).
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Theorem: For any a,b,c € Z, if a|b and a|c then a|(b— c).

Proof: Assume a|b and a|c
b=agand c=aq where q.q € Z

b—c=aq—aq =a(q—q’) Done?
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Must show: For every a,b € Z, (2)? # 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.
-P—= P;--- = R
-P= Q- = -R
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Product of first k primes..

Did we prove?
» “The product of the first k primes plus 1 is prime.”
> No.

» The chain of reasoning started with a false statement.

Consider example..
> 2x3x5x7x11x13+1=30031=59 x 509
» There is a prime in between 13 and g = 30031 that divides q.

» Proof assumed no primes in between py and q.
As it assumed the only primes were the first k primes.
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Poll: Odds and evens.
X is even, y is odd.

Even numbers are divisible by 2.
Which are even?

xy Even: 2(ky).
xy® Even: 2(ky?®).
) x+y

A, C, D, E all contain a factor of 2.
E.g., x = 2k, x3 = 8k = 2(4k) and is even.
y3. Odd?
y=(2k+1). y3 =8k3 +24k? 424k +1 =2(4k3 +12k? +-12k) +1.
Odd times an odd? Odd.
Any power of an odd number? Odd.
Idea: (2k +1)" has terms

(a) with the last term being 1
(b) and all other terms having a multiple of 2k.

)
) x+5x Even: 2k +5(2k) = 2(k + 5k)
)
)
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Proof by cases.

Theorem: There exist irrational x and y such that x¥ is rational.
Letx =y =+2.

V2 . .
Case 1: x¥ =+/2" " is rational. Done!

Case 2: \/é\/é is irrational.

» New values: x = \@\/E, y=+2.
>

X = (ff) VRt s

Thus, we have irrational x and y with a rational x¥ (i.e., 2).
One of the cases is true so theorem holds.
Question: Which case holds? Don’t know!!!
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Which of the following are (certainly) true?
(A) f |s irrational.
(B) f |s rational.
(C) \f is rational or it isn't.
(D) (2‘F) is rational.
(A),(C),(D)

(B)

B) | don’t know.
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Theorem: 3 =4
Proof: Assume 3 =4.
Start with 12 = 12.

Divide one side by 3 and the other by 4 to get
4=3.

By commutativity theorem holds.
What's wrong?

Don’t assume what you want to prove!
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Theorem: 1 =2
Proof: For x = y, we have

(2 —xy) = X2~ y?

X(x=y)=(x+y)(x-y)

x=(x+y)
X =2X
1=2

Poll: What is the problem?

(A) Assumed what you were proving.
(B) No problem. lis fine.
(C) x—yis zero.
(D)

D) Can’t multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!
Also: Multiplying inequalities by a negative.
P — Qdoes not mean Q = P.



Summary: Note 2.

Direct Proof:



Summary: Note 2.

Direct Proof:
To Prove: P = Q.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P = Q Assume -Q.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P Assume —P.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P Assume —P. Prove False .
V2 is rational.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P Assume —P. Prove False .
V2 is rational.
V2 = % with no common factors....



Summary: Note 2.

Direct Proof:
To Prove: P — Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:

To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P Assume —P. Prove False .
V2 is rational.
V2 = % with no common factors....

By Cases: informal.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P Assume —P. Prove False .
V2 is rational.
V2 = % with no common factors....

By Cases: informal.
Universal: show that statement holds in all cases.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P Assume —P. Prove False .
V2 is rational.
V2 = % with no common factors....

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P Assume —P. Prove False .
V2 is rational.
V2 = % with no common factors....

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either v/2 and /2 worked.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P Assume —P. Prove False .
V2 is rational.
V2 = % with no common factors....

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either v/2 and /2 worked.

or v/2 and \f2\/§ worked.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P Assume —P. Prove False .
V2 is rational.
V2 = % with no common factors....

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either v/2 and /2 worked.

or v/2 and \f2\/§ worked.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?isodd = nisodd. = nis even = n?is even.

By Contradiction:
To Prove: P Assume —P. Prove False .
V2 is rational.
V2 = % with no common factors....

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either v/2 and /2 worked.

or v2 and v2"2 worked.
Careful when proving!



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P Assume —P. Prove False .
V2 is rational.
V2 = % with no common factors....

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either v/2 and /2 worked.

or v/2 and \f2\/§ worked.

Careful when proving!
Don’t assume the theorem.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P Assume —P. Prove False .
V2 is rational.
V2 = % with no common factors....

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either v/2 and /2 worked.

or v/2 and \f2\/§ worked.

Careful when proving!
Don’t assume the theorem. Divide by zero.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P Assume —P. Prove False .
V2 is rational.
V2 = % with no common factors....

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either v/2 and /2 worked.

or v/2 and \@ﬁ worked.

Careful when proving!
Don’t assume the theorem. Divide by zero.Watch converse.



Summary: Note 2.

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.
alband ajc = a|(b-c).

By Contraposition:
To Prove: P — Q Assume —Q. Prove —P.
n?is odd = nis odd. = nis even = n? is even.

By Contradiction:
To Prove: P Assume —P. Prove False .
V2 is rational.
V2 = % with no common factors....

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either v/2 and /2 worked.

or v/2 and \@ﬁ worked.

Careful when proving!
Don’t assume the theorem. Divide by zero.Watch converse. ...



CS70: Note 3. Induction!

Poll. What'’s the biggest number?
A) 100

B) 101

) n+1

D)

)

E) This is about the “recursive leap of faith.”

infinity.
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