Good for jobs? candidates? Is the Job-Proposes better for jobs? for candidates? **Definition:** A matching is *x*-optimal if *x*'s partner is its best partner in any stable pairing. **Definition:** A matching is *x*-pessimal if *x*'s partner is its worst partner in any stable pairing. **Definition:** A matching is job optimal if it is *x*-optimal for all jobs *x*. .. and so on for job pessimal, candidate optimal, candidate pessimal. Claim: The optimal partner for a job must be first in its preference list. True? False? False! Subtlety here: Best partner in any stable matching. As well as you can be in a globally stable solution! Question: Is there a job or candidate optimal matching? Is it possible: *b*-optimal pairing different from the *b*'-optimal matching! Yes? No? How about for candidates? Theorem: Job Propose and Reject produces candidate-pessimal pairing. T – pairing produced by JPR. *S* – worse stable pairing for candidate *g*. In T, (g, b) is pair. In S, (g, b^*) is pair. g prefers b to b^* . T is job optimal, so b prefers g to its partner in S. (g, b) is Rogue couple for S S is not stable. Contradiction.

1/33

4/33

Notes: Not really induction. Structural statement: Job optimality \implies Candidate pessimality.

Job Propose and Candidate Reject is optimal! For jobs? For candidates?	
Theorem: Job Propose and Reject produces a job-optimal pairing.	
Proof:	
Assume not: a job b is not paired with optimal candidate, g .	
There is a stable pairing S where b and g are paired.	
Let t be first day job b gets rejected by its optimal candidate g who it is paired with in stable pairing S.	
b^* - knocks b off of g 's string on day $t \implies g$ prefers b^* to b (partner in S)	
By choice of t , b^* likes g at least as much as optimal candidate.	
$\implies b^*$ prefers g to its partner g^* in S.	
Rogue couple for <i>S</i> . So <i>S</i> is not a stable pairing. Contradiction.	
Notes: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple!	
Used Well-Ordering principleInduction.	2/33
Quick Questions.	

How does one make it better for candidates? Propose and Reject - stable matching algorithm. One side proposes. Jobs Propose \implies job optimal. Candidates propose. \implies optimal for candidates.

Poll

What did proof use? (A) Algorithm. (B) Well ordering principle. (C) First job b, rejected by optimal candidate g Job *b** was by optimal candidate. likes q a lot. (D) Contradiction. (E) Definition of optimal. There exists a better stable S. (F) S is not stable.

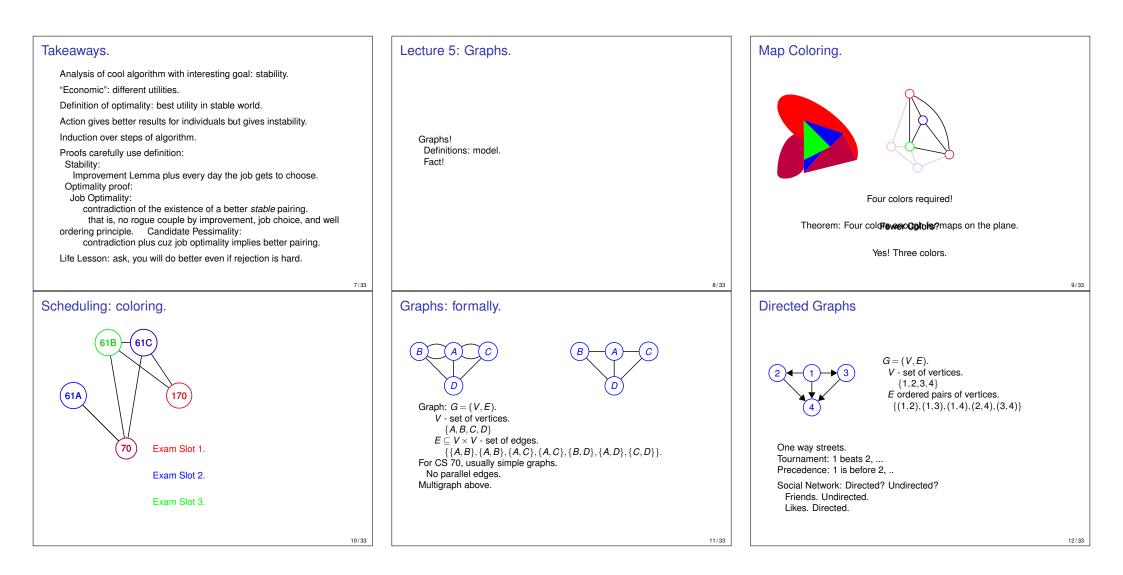
Residency Matching..

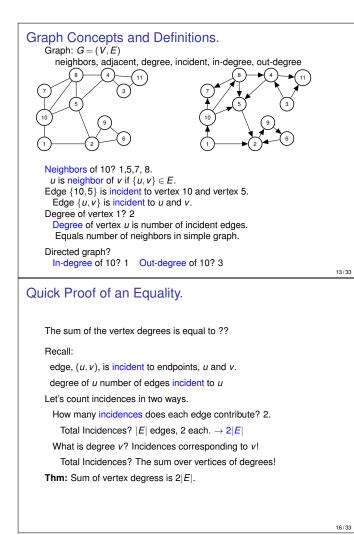
The method was used to match residents to hospitals. Hospital optimal until 1990's... Resident optimal. Another variation: couples.

5/33

6/33

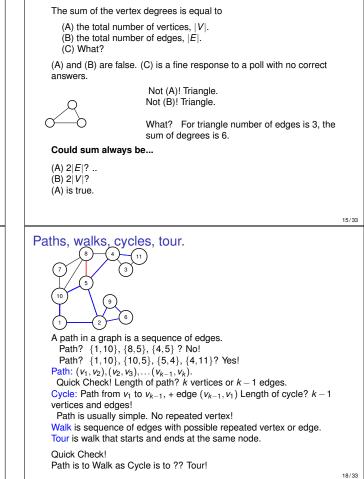
3/33

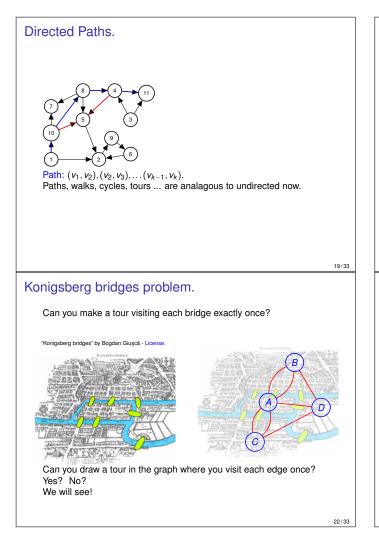


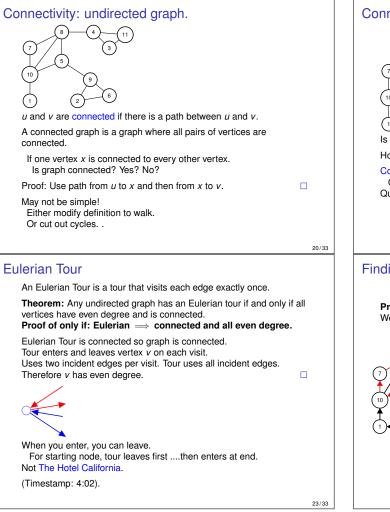


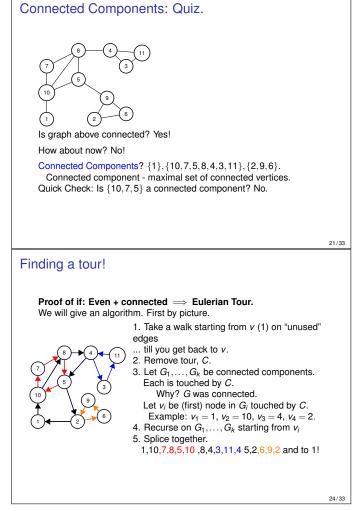
Graph Concepts and Definitions.			Sum of deg
Graph: $G = (V, E)$ neighbors, adjacent, degr 7 10 10 10 10 10 10 10 10	ee, incident, in-degree, out-degree		The sum of (A) the to (B) the to (C) What (A) and (B) answers. Could sum (A) 2 <i>E</i> ? (B) 2 <i>V</i> ? (A) is true.
		14/33	
 (B) The total number of edge (C) The total number of edge (D) The number of edge-ver (E) The sum of degrees is 2 	tex incidences for an edge e is 2. e-vertex incidences is $ V $. e-vertex incidences is $2 E $. tex incidences for a vertex v is its degree.	17/33	Paths, walk

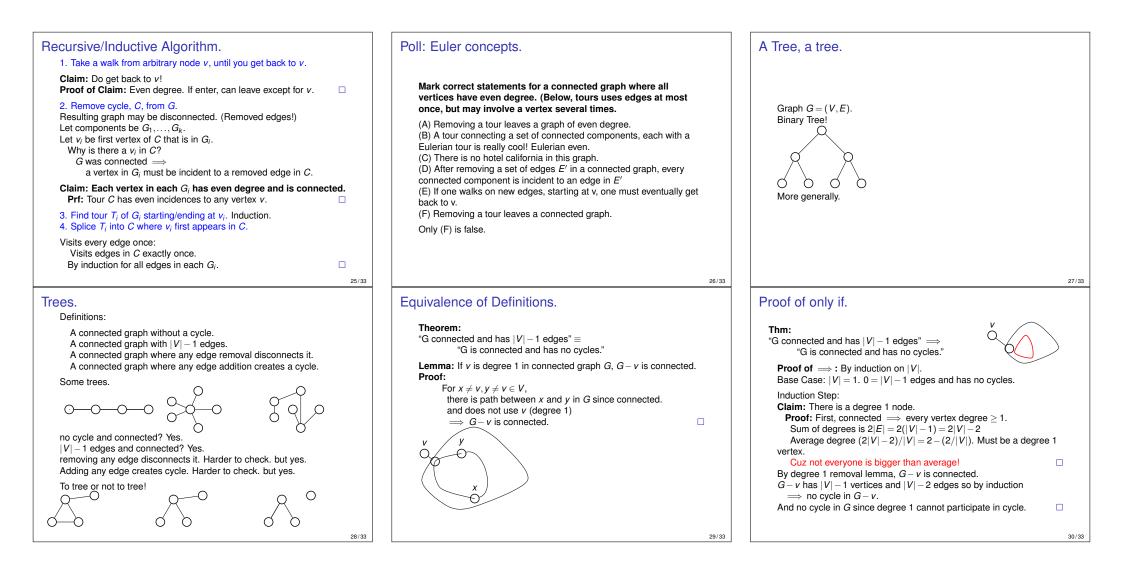
grees?











Proof of if	Poll: Oh tree, beautiful tree.	Lecture Summary.
Thm: "G is connected and has no cycles" \Rightarrow "G connected and has $ V - 1$ edges" Proof: Walk from a vertex using untraversed edges. Until get stuck. Claim: Degree 1 vertex. Proof of Claim: Can't visit more than once since no cycle. Entered. Didn't leave. Only one incident edge. Removing node doesn't create cycle. New graph is connected. Removing degree 1 node doesn't disconnect from Degree 1 lemma. By induction $G - v$ has $ V - 2$ edges. G has one more or $ V - 1$ edges.	 Let G be a connected graph with V - 1 edges. (A) Removing a degree 1 vertex can disconnect the graph. (B) One can use induction on smaller objects. (C) The average degree is 2 - 2/ V . (D) There is a hotel california: a degree 1 vertex. (E) Everyone can be bigger than average. (B), (C), (D) are true 	Graphs. Basics.Degree, Incidence, Sum of degrees is $2 E $. Connectivity. Connected Component. maximal set of vertices that are connected.Algorithm for Eulerian Tour. Take a walk until stuck to form tour. Remove tour. Recurse on connected components.Trees: degree 1 lemma \implies equivalence of several definitions. G: n vertices and $n-1$ edges and connected. remove degree 1 vertex. $n-1$ vertices, $n-2$ edges and connected \implies acyclic. (Ind. Hyp.) degree 1 vertex is not in a cycle. G is acyclic.
31/33		32/33 33/33