



 What did we use in our proofs of key ideas? (A) Distributive Property of multiplication over addition. (B) Euler's formula. (C) The definition of a prime number. (D) Euclid's Lemma. (A) and (C) 	Modular Arithmetic.	If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00. 16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12. What time is it in 100 hours? 101:00! or 5:00. $101 = 12 \times 8 + 5$. 5 is the same as 101 for a 12 hour clock system. Clock time equivalent up to addition of any integer multiple of 12. Custom is only to use the representative in {12, 1,, 11} (Almost remainder, except for 12 and 0 are equivalent.)
13/52	14/5	2 15/52
Day of the week.	Years and years	Modular Arithmetic: refresher.
 This is Thursday is September 18, 2024. What day is it a year from now? on September 18, 2025? Number days. 0 for Sunday, 1 for Monday,, 6 for Saturday. Today: day 4. 5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1 two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday! What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+366 or day 370. Leap year. Smallest representation: subtract 7 until smaller than 7. divide and get remainder. 370/7 leaves quotient of 52 and remainder 6. 369 = 7(52) + 6 or September 18, 2025 is a Saturday. 	80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4. It is day $4 + 366 \times 20 + 365 \times 60$. Equivalent to? Hmm. What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4. Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$ Remainder when dividing by 7? $104 = 14 \times 7 + 6$. Or September 18, 2102 is Saturday! Further Simplify Calculation: 20 has remainder 6 when divided by 7. 60 has remainder 4 when divided by 7. Get Day: $4 + 2 \times 6 + 1 \times 4 = 20$. Or Day 6. September 18, 2104 is Saturday. "Reduce" at any time in calculation!	x is congruent to y modulo m or "x \equiv y (mod m)" if and only if (x - y) is divisible by m. or x and y have the same remainder w.r.t. m. or x = y + km for some integer k. Mod 7 equivalence or residue classes: {,-7,0,7,14,} {,-6,1,8,15,} Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y. or " $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$ $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ " Proof: If $a \equiv c \pmod{m}$, then $a = c + km$ for some integer k. If $b \equiv d \pmod{m}$, then $b = d + jm$ for some integer j. Therefore, $a + b = c + d + (k + j)m$ and since $k + j$ is integer. $\implies a + b \equiv c + d \pmod{m}$. Can calculate with representative in $\{0,, m - 1\}$.

Notation

```
x (mod m) or mod (x,m)
- remainder of x divided by m in \{0, \ldots, m-1\}.
```

 $mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m$

 $\lfloor \frac{x}{m} \rfloor$ is quotient.

 $mod(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \cancel{4} = 5$

Work in this system. $a \equiv b \pmod{m}$. Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

 $6\equiv3+3\equiv3+10 \pmod{7}.$

```
6 = 3 + 3 = 3 + 10 \pmod{7}.
```

```
Generally, not 6 \pmod{7} = 13 \pmod{7}.
But probably won't take off points, still hard for us to read.
```

Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and m, gcd(x,m), is 1, then x has a multiplicative inverse modulo m. Proof \implies : **Claim:** The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m. Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo m. \implies One must correspond to 1 modulo *m*. Inverse Exists! Proof of Claim: If not distinct, then $\exists a, b \in \{0, \dots, m-1\}, a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k. acd(x,m) = 1 \implies Prime factorization of *m* and *x* do not contain common primes. \implies (*a*-*b*) factorization contains all primes in *m*'s factorization. So (a - b) has to be multiple of m. \implies $(a-b) \ge m$. But $a, b \in \{0, ..., m-1\}$. Contradiction. Inverses and Factors.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.
In modular arithmetic. 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$. $x = 3 \pmod{2}2$:5 Check $74(3) = 12 = 5 \pmod{7}$. For 8 Arodulo 12:5 Check $74(3) = 12 = 5 \pmod{7}$. For 8 Arodulo 12:5 Check $74(3) = 12 = 5 \pmod{7}$. $x = 3 \pmod{7}$. Check $7(3) = 12 + 5 \pmod{7}$. $8k - 12\ell$ is a multiple of four for any ℓ and $k \implies$ $8k \neq 1 \pmod{2}$ for any k.

Proof review. Consequence.

19/52

22/52

```
Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.
Proof Sketch: The set S = \{0x, 1x, \dots, (m-1)x\} contains
y \equiv 1 \mod m if all distinct modulo m.
                                                                      For x = 4 and m = 6. All products of 4...
 S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}
reducing (mod 6)
 S = \{0, 4, 2, 0, 4, 2\}
Not distinct. Common factor 2. Can't be 1. No inverse.
For x = 5 and m = 6.
 S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}
All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).
(Hmm. What normal number is it own multiplicative inverse?) 1 -1.
    5x = 3 \pmod{6} What is x? Multiply both sides by 5.
    x = 15 = 3 \pmod{6}
4x = 3 \pmod{6} No solutions. Can't get an odd.
4x = 2 \pmod{6} Two solutions! x = 2.5 \pmod{6}
Very different for elements with inverses.
                                                                         23/52
```

Poll

20/52

Mark true statements.

(A) Mutliplicative inverse of 2 mod 5 is 3 mod 5. (B) The multiplicative inverse of $(n-1) \pmod{n} = ((n-1) \pmod{n})$. (C) Multiplicative inverse of 2 mod 5 is 0.5. (D) Multiplicative inverse of 4 = -1 (mod 5). (E) (-1)x(-1) = 1. Woohoo. (F) Multiplicative inverse of 4 mod 5 is 4 mod 5.

(C) is false. 0.5 has no meaning in arithmetic modulo 5.

Proof Review 2: Bijections.

```
If gcd(x,m) = 1.
  Then the function f(a) = xa \mod m is a bijection.
   One to one: there is a unique pre-image(single x where y = f(x).)
   Onto: the sizes of the domain and co-domain are the same.
x = 3, m = 4.
 f(1) = 3(1) = 3 \pmod{4},
 f(2) = 6 = 2 \pmod{4},
 f(3) = 1 \pmod{3}.
 Oh yeah. f(0) = 0 \pmod{3}.
Bijection \equiv unique pre-image and same size.
  All the images are distinct. \implies unique pre-image for any image.
x = 2, m = 4.
 f(1) = 2.
f(2) = 0,
f(3) = 2
    Oh yeah. f(0) = 0.
Not a bijection.
```

21/52

24/52

Which is bijection? (A) $f(x) = x$ for domain and range being \mathbb{R} (B) $f(x) = ax \pmod{n}$ for $x \in \{0,, n-1\}$ and $gcd(a, n) = 2$ (C) $f(x) = ax \pmod{n}$ for $x \in \{0,, n-1\}$ and $gcd(a, n) = 1$ (B) is not. Thus, $a(nd) = 1 + k\ell d \text{ or}$ $d(na - k\ell) = 1$. But $d > 1$ and $z = (na - k\ell) \in \mathbb{Z}$. so $dz \neq 1$ and $dz = 1$. Contradiction.	 How to find the inverse? How to find if x has an inverse modulo m? Find gcd (x, m). Greater than 1? No multiplicative inverse. Equal to 1? Multiplicative inverse. Algorithm: Try all numbers up to x to see if it divides both x and m. Very slow.
25/52 26/52 Inverses Refresh	Divisibility
Next up.Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from $0 + 8k$ for any $k \in \mathbb{N}$.Next up.Euclid's Algorithm.Runtime. Euclid's Extended Algorithm.Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from $0 + 9k$ for any $k \in \mathbb{N}$. $3 = gcd(6,9)!$ x has an inverse modulo m if and only if $gcd(x,m) > 1?$ No. $gcd(x,m) > 1?$ No. $gcd(x,m) = 1$? Compute gcd! Compute Inverse modulo m.	Notation: $d x$ means "d divides x" or x = kd for some integer k. Fact: If $d x$ and $d y$ then $d (x+y)$ and $d (x-y)$. Is it a fact? Yes? No? Proof: $d x$ and $d y$ or $x = \ell d$ and $y = kd$ $\Rightarrow x - y = kd - \ell d = (k - \ell)d \Rightarrow d (x - y)$

More divisibility Notation: $d x$ means "d divides x" or x = kd for some integer k. Lemma 1: If $d x$ and $d y$ then $d y$ and $d \mod (x, y)$. Proof: $mod(x,y) = x - \lfloor x/y \rfloor \cdot y$ x = a y for integer a	Euclid's algorithm. GCD Mod Corollary: gcd(x,y) = gcd(y, mod (x,y)). Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x (define (euclid x y) (if (= y 0) x	Excursion: Value and Size. Before discussing running time of gcd procedure What is the value of 1,000,000? one million or 1,000,000! What is the "size" of 1,000,000?
$= x - s \cdot y \text{ for integer } s$ $= kd - s\ell d \text{ for integer } k, \ell \text{ where } x = kd \text{ and } y = \ell d$ $= (k - s\ell)d$ Therefore $d \mod(x, y)$. And $d y$ since it is in condition. Lemma 2: If $d y$ and $d \mod(x, y)$ then $d y$ and $d x$. Proof: Similar. Try this at home. GCD Mod Corollary: $gcd(x, y) = gcd(y, \mod(x, y))$. Proof: x and y have same set of common divisors as x and $mod(x, y)$ by Lemma 1 and 2.	(euclid y (mod x y)))) **** Theorem: (euclid x y) = gcd(x, y) if $x \ge y$. Proof: Use Strong Induction. Base Case: $y = 0$, "x divides y and x" \implies "x is common divisor and clearly largest." Induction Step: mod $(x, y) < y \le x$ when $x \ge y$ call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis computes gcd(y, mod (x, y))	Number of digits in base 10: 7. Number of bits (a digit in base 2): 21. For a number x, what is its size in bits? $n = b(x) \approx \log_2 x$
Same common divisors \implies largest is the same. \square $31/52$ Euclid procedure is fast.	which is gcd(x,y) by GCD Mod Corollary.	32/52 BOII
Theorem: (euclid x y) uses $2n$ "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots y/2\}$? Check 2, check 3, check 4, check 5, check $y/2$. If $y \approx x$ roughly y uses n bits 2^{n-1} divisions! Exponential dependence on size! 101 bit number. $2^{100} \approx 10^{30} =$ "million, trillion, trillion" divisions! 2n is much faster! roughly 200 divisions.	Assume log ₂ 1,000,000 is 20 to the nearest integer. Mark what's true. (A) The size of 1,000,000 is 20 bits. (B) The size of 1,000,000 is one million. (C) The value of 1,000,000 is one million. (D) The value of 1,000,000 is 20. (A) and (C).	Which are correct? (A) gcd(700,568) = gcd (568,132) (B) gcd(8,3) = gcd(3,2) (C) gcd(8,3) = 1 (D) gcd(4,0) = 4
34/52		35/52 36/

Algorithms at work.	Runtime Proof.	Runtime Proof (continued.)
Trying everything Check 2, check 3, check 4, check 5, check $y/2$. "(gcd x y)" at work. euclid (700, 568) euclid (568, 132) euclid (132, 40) euclid (12, 4) euclid (12, 4) euclid (4, 0) 4 Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls. (The second is less than the first.)	(define (euclid x y) (if (= y 0) x (euclid y (mod x y)))) Theorem: (euclid x y) uses $O(n)$ "divisions" where $n = b(x)$. Proof: Fact: First arg decreases by at least factor of two in two recursive calls. After $2\log_2 x = O(n)$ recursive calls, argument x is 1 bit number. One more recursive call to finish. 1 division per recursive call. O(n) divisions.	(define (euclid x y) (if (= y 0) x (euclid y (mod x y)))) Fact: First arg decreases by at least factor of two in two recursive calls. Proof of Fact: Recall that first argument decreases every call. Case 1: $y < x/2$, first argument is $y \Rightarrow$ true in one recursive call; Case 2: Will show " $y \ge x/2$ " \Rightarrow "mod $(x, y) \le x/2$." mod (x, y) is second argument in next recursive call, and becomes the first argument in the next one. When $y \ge x/2$, then $\lfloor \frac{x}{y} \rfloor = 1$, mod $(x, y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \le x - x/2 = x/2$
Remark	Finding an inverse?	Euclid's GCD algorithm.
<pre>(define (euclid x y) (if (= y 0) x (euclid y (- x y)))) Didn't necessarily need to do gcd. Runtime proof still works.</pre>	We showed how to efficiently tell if there is an inverse. Extend euclid to find inverse.	<pre>(define (euclid x y) (if (= y 0) x (euclid y (mod x y)))) Computes the gcd(x,y) in O(n) divisions. For x and m, if gcd(x,m) = 1 then x has an inverse modulo m.</pre>
40/52	41/	52 42/52

Multiplicative Inverse.	Modular Arithmetic Lecture in a minute.	
	Modular Arithmetic: $x \equiv y \pmod{N}$ if $x = y + kN$ for some integer k.	
	For $a \equiv b \pmod{N}$, and $c \equiv d \pmod{N}$, $ac = bd \pmod{N}$ and $a+b=c+d \pmod{N}$.	
GCD algorithm used to tell if there is a multiplicative inverse.	Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if $gcd(a, N) = 1$.	
How do we find a multiplicative inverse? Tuesday	Why? If: $f(x) = ax \pmod{N}$ is a bijection on $\{1, \dots, N-1\}$. $ax - ay = 0 \pmod{N} \implies a(x - y)$ is a multiple of N . If $gcd(a, N) = 1$, then $(x - y)$ must contain all primes in prime factorization of N , and is therefore be bigger than N . Only if: For $a = xd$ and $N = yd$, any $ma + kN = d(mx - ky)$ or is a multiple of d , and is not 1.	
	Euclid's Alg: $gcd(x, y) = gcd(y \mod x, x)$ Fast cuz value drops by a factor of two every two recursive calls.	
	Know if there is an inverse, but how do we find it? On Tuesday!	
43/52	44	/52