1. Modular Arithmetic.

 Modular Arithmetic. Clock Math!!!

- Modular Arithmetic. Clock Math!!!
- 2. Inverses for Modular Arithmetic: Greatest Common Divisor.

- Modular Arithmetic. Clock Math!!!
- Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!

- Modular Arithmetic. Clock Math!!!
- 2. Inverses for Modular Arithmetic: Greatest Common Divisor.
 Division!!!
- 3. Euclid's GCD Algorithm.

- Modular Arithmetic. Clock Math!!!
- Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
- 3. Euclid's GCD Algorithm.
 A little tricky here!

Complete graphs, really connected!

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

Trees,

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

Trees, few edges. (|V|-1)

Complete graphs, really connected! But lots of edges.

|V|(|V|-1)/2

Trees, few edges. (|V|-1)

but just falls apart!

Complete graphs, really connected! But lots of edges.

|V|(|V|-1)/2

Trees, few edges. (|V|-1)

but just falls apart!

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

Trees, few edges. (|V|-1) but just falls apart!

Hypercubes.

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

Trees, few edges. (|V|-1) but just falls apart!

Hypercubes. Really connected.

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

Trees, few edges. (|V|-1)

but just falls apart!

Hypercubes. Really connected. $|V| \log |V|$ edges!

Complete graphs, really connected! But lots of edges.

```
|V|(|V|-1)/2
```

Trees, few edges. (|V|-1)

but just falls apart!

Complete graphs, really connected! But lots of edges.

```
|V|(|V|-1)/2
```

Trees, few edges. (|V|-1)

but just falls apart!

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

Trees, few edges. (|V|-1)

but just falls apart!

$$G = (V, E)$$

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

Trees, few edges. $(|V|-1)$

but just falls apart!

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

Trees, few edges. $(|V|-1)$
but just falls apart!

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y)|x \text{ and } y \text{ differ in one bit position.}\}$

Complete graphs, really connected! But lots of edges.

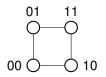
$$|V|(|V|-1)/2$$

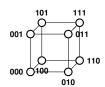
Trees, few edges. (|V|-1)

but just falls apart!

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y)|x \text{ and } y \text{ differ in one bit position.}\}$





Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

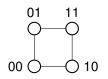
Trees, few edges. (|V|-1)

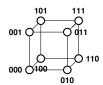
but just falls apart!

Hypercubes. Really connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y)|x \text{ and } y \text{ differ in one bit position.}\}$





2ⁿ vertices.

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

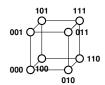
Trees, few edges. (|V|-1)

but just falls apart!

Hypercubes. Really connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y)|x \text{ and } y \text{ differ in one bit position.}\}$



2ⁿ vertices. number of *n*-bit strings!

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

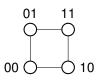
Trees, few edges. (|V|-1)

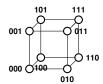
but just falls apart!

Hypercubes. Really connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y)|x \text{ and } y \text{ differ in one bit position.}\}$





 2^n vertices. number of *n*-bit strings! $n2^{n-1}$ edges.

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

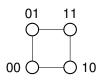
Trees, few edges. (|V|-1)

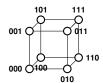
but just falls apart!

Hypercubes. Really connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y)|x \text{ and } y \text{ differ in one bit position.}\}$





 2^n vertices. number of *n*-bit strings! $n2^{n-1}$ edges.

2ⁿ vertices each of degree n

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

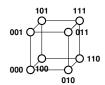
Trees, few edges. (|V|-1)

but just falls apart!

Hypercubes. Really connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y)|x \text{ and } y \text{ differ in one bit position.}\}$



 2^n vertices. number of *n*-bit strings! $n2^{n-1}$ edges.

2ⁿ vertices each of degree *n* total degree is *n*2ⁿ

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

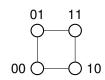
Trees, few edges. (|V|-1)

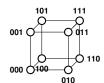
but just falls apart!

Hypercubes. Really connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y)|x \text{ and } y \text{ differ in one bit position.}\}$





 2^n vertices. number of *n*-bit strings! $n2^{n-1}$ edges.

2ⁿ vertices each of degree n total degree is n2ⁿ and half as many edges!

Complete graphs, really connected! But lots of edges.

$$|V|(|V|-1)/2$$

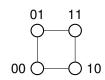
Trees, few edges. (|V|-1)

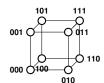
but just falls apart!

Hypercubes. Really connected. $|V| \log |V|$ edges! Also represents bit-strings nicely.

$$G = (V, E)$$

 $|V| = \{0, 1\}^n$,
 $|E| = \{(x, y)|x \text{ and } y \text{ differ in one bit position.}\}$





 2^n vertices. number of *n*-bit strings! $n2^{n-1}$ edges.

2ⁿ vertices each of degree n total degree is n2ⁿ and half as many edges!

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x,1x).

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x,1x).



Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S;

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

(S, V - S) is cut.

Hypercube: Can't cut me!

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

```
(S, V - S) is cut.
(E \cap S \times (V - S)) - cut edges.
```

Hypercube: Can't cut me!

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

```
(S, V - S) is cut.
(E \cap S \times (V - S)) - cut edges.
```

Hypercube: Can't cut me!

Thm: Any subset S of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

$$(S, V - S)$$
 is cut.
 $(E \cap S \times (V - S))$ - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: n = 1

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

 $S = \{0\}$ has one edge leaving.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

 $S = \{0\}$ has one edge leaving. $|S| = \phi$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

 $S = \{0\}$ has one edge leaving. $|S| = \phi$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

Base Case: $n = 1 \text{ V} = \{0,1\}.$

 $S = \{0\}$ has one edge leaving. $|S| = \phi$ has 0.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

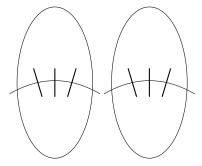
Case 1: Count edges inside subcube inductively.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

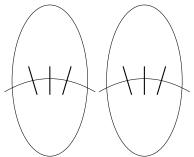


Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.



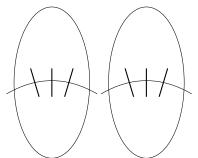
Case 2: Count inside and across.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

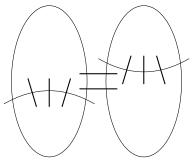
Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.



Case 2: Count inside and across.



Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Recursive definition:

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_X \text{ that connect them.}$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0=(V_0,E_0),H_1=(V_1,E_1),$$
 edges E_x that connect them. $H=(V_0\cup V_1,E_0\cup E_1\cup E_x)$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_x that connect them.

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_x that connect them.

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_x that connect them.

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_x \text{ that connect them.}$

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \geq |S_1|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \geq |S_1|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \geq |S_1|$.

Total cut edges $\geq |S_0| + |S_1| = |S|$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

$$H_0 = (V_0, E_0), H_1 = (V_1, E_1),$$
 edges E_x that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

$$S = S_0 \cup S_1$$
 where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$.

Edges cut in $H_1 \ge |S_1|$.

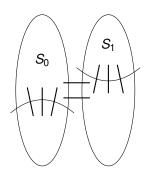
Total cut edges $\geq |S_0| + |S_1| = |S|$.

7/44

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

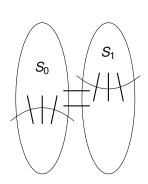
Proof: Induction Step. Case 2.

 $|\mathcal{S}_0| \geq |\mathit{V}_0|/2.$



Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

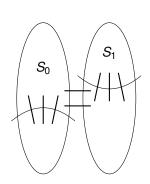
Proof: Induction Step. Case 2.



 $|S_0| \ge |V_0|/2.$ Recall Case 1: $|S_0|, |S_1| \le |V|/2$ $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

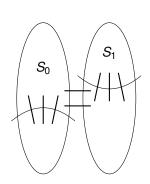
Proof: Induction Step. Case 2.



 $|S_0| \ge |V_0|/2$. Recall Case 1: $|S_0|, |S_1| \le |V|/2$ $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$. $\implies \ge |S_1|$ edges cut in E_1 .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

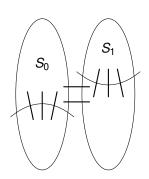
Proof: Induction Step. Case 2.



$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\Longrightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \end{split}$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

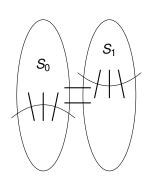
Proof: Induction Step. Case 2.



$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\Longrightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\Longrightarrow \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

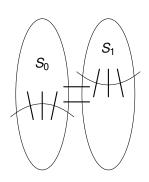


$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\implies \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\implies \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

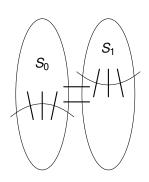


$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

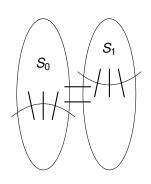


$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

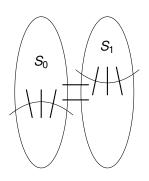


$$|S_0| \ge |V_0|/2.$$
 Recall Case 1: $|S_0|, |S_1| \le |V|/2$ $|S_1| \le |V_1|/2$ since $|S| \le |V|/2.$ $\implies \ge |S_1|$ edges cut in E_1 . $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$ $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\Rightarrow |S_0| - |S_1|$ edges cut in E_x .

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



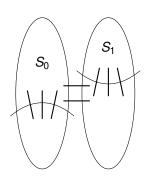
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

$$\geq$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



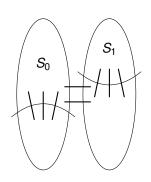
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



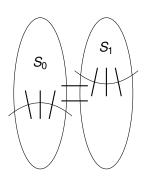
$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\Longrightarrow \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \Longrightarrow |V_0 - S| \leq |V_0|/2 \\ &\Longrightarrow \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes. $\Rightarrow |S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



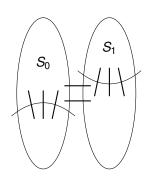
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\Rightarrow = |S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



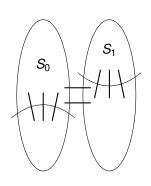
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

$$\geq \ |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



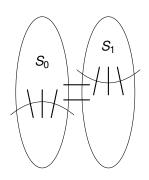
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies > |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

$$\geq \frac{|S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|}{|V_0|}$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



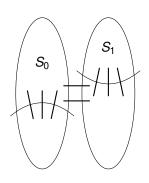
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| \ |V_0| = |V|/2 \geq |S|.$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



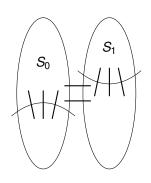
$$|S_0| \ge |V_0|/2$$
.
Recall Case 1: $|S_0|, |S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies > |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies = |S_0| - |S_1|$ edges cut in E_x .

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| |V_0| = |V|/2 \geq |S|.$$

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$|\textbf{S}_0| \geq |\textbf{V}_0|/2.$$

Recall Case 1:
$$|S_0|$$
, $|S_1| \le |V|/2$
 $|S_1| \le |V_1|/2$ since $|S| \le |V|/2$.
 $\implies \ge |S_1|$ edges cut in E_1 .
 $|S_0| \ge |V_0|/2 \implies |V_0 - S| \le |V_0|/2$
 $\implies \ge |V_0| - |S_0|$ edges cut in E_0 .

Edges in E_x connect corresponding nodes. $\implies |S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

$$\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| \ |V_0| = |V|/2 \geq |S|.$$

Also, case 3 where $|S_1| \ge |V|/2$ is symmetric.

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$

Central object of study.

Euler: v + f = e + 2.

Tree. Plus adding edge adds face.

```
Euler: v + f = e + 2.
```

Tree. Plus adding edge adds face.

Planar graphs: $e \le 3v = 6$.

Count face-edge incidences to get $2e \le 3f$.

Replace *f* in Euler.

```
Euler: v + f = e + 2.
```

Tree. Plus adding edge adds face.

Planar graphs: $e \le 3v = 6$.

Count face-edge incidences to get $2e \le 3f$.

Replace *f* in Euler.

Coloring:

degree d vertex can be colored if d+1 colors.

Small degree vertex in planar graph: 6 color theorem.

Recolor separate and planarity: 5 color theorem.

Euler: v + f = e + 2.

Tree. Plus adding edge adds face.

Planar graphs: $e \le 3v = 6$.

Count face-edge incidences to get $2e \le 3f$.

Replace *f* in Euler.

Coloring:

degree d vertex can be colored if d+1 colors.

Small degree vertex in planar graph: 6 color theorem.

Recolor separate and planarity: 5 color theorem.

Graphs:

Trees: sparsest connected.

Complete:densest

Hypercube: middle.

Modular Arithmetic.

Applications: cryptography, error correction.

Theorem: If d|x and d|y, then d|(y-x).

Theorem: If d|x and d|y, then d|(y-x).

Proof:

Theorem: If d|x and d|y, then d|(y-x).

Proof:

x = ad, y = bd,

Theorem: If d|x and d|y, then d|(y-x).

Proof:

$$x = ad$$
, $y = bd$,
 $(x - y) = (ad - bd) = d(a - b) \implies d|(x - y)$.

12/44

Theorem: If d|x and d|y, then d|(y-x).

Proof:

$$x = ad$$
, $y = bd$,
 $(x - y) = (ad - bd) = d(a - b) \implies d|(x - y)$.

Theorem: Every number $n \ge 2$ can be represented as a product of primes.

12/44

Theorem: If d|x and d|y, then d|(y-x).

Proof:

$$x = ad$$
, $y = bd$,
 $(x - y) = (ad - bd) = d(a - b) \implies d|(x - y)$.

Theorem: Every number $n \ge 2$ can be represented as a product of primes.

Proof: Either prime, or $n = a \times b$, and use strong induction. (Uniqueness? Later.)

Poll

What did we use in our proofs of key ideas?

- (A) Distributive Property of multiplication over addition.
- (B) Euler's formula.
- (C) The definition of a prime number.
- (D) Euclid's Lemma.

Poll

What did we use in our proofs of key ideas?

- (A) Distributive Property of multiplication over addition.
- (B) Euler's formula.
- (C) The definition of a prime number.
- (D) Euclid's Lemma.
- (A) and (C)

Next Up.

Modular Arithmetic.

If it is 1:00 now.

If it is 1:00 now.
What time is it in 2 hours?

If it is 1:00 now.

What time is it in 2 hours? 3:00!

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours?

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours?

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours?

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00!

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

$$101 = 12 \times 8 + 5$$
.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5$.

5 is the same as 101 for a 12 hour clock system.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5$.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5$.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

$$101 = 12 \times 8 + 5$$
.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in $\{12, 1, ..., 11\}$

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

$$101 = 12 \times 8 + 5$$
.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in $\{12,1,...,11\}$ (Almost remainder, except for 12 and 0 are equivalent.)

This is Thursday is September 18, 2024.

This is Thursday is September 18, 2024. What day is it a year from now?

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025?

This is Thursday is September 18, 2024.
What day is it a year from now? on September 18, 2025?
Number days.

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

```
This is Thursday is September 18, 2024.
```

What day is it a year from now? on September 18, 2025? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then.

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then.

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then. day 29 or day 1.

```
This is Thursday is September 18, 2024.
```

What day is it a year from now? on September 18, 2025? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1 two days are equivalent up to addition/subtraction of multiple of 7.

This is Thursday is September 18, 2024.
What day is it a year from now? on September 18, 2025?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 4.
5 days from then. day 9 or day 2 or Tuesday.
25 days from then. day 29 or day 1. 29 = (7)4+1
two days are equivalent up to addition/subtraction of multiple of 7.
11 days from then

This is Thursday is September 18, 2024.
What day is it a year from now? on September 18, 2025?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 4.
5 days from then. day 9 or day 2 or Tuesday.
25 days from then. day 29 or day 1. 29 = (7)4+1
two days are equivalent up to addition/subtraction of multiple of 7.
11 days from then is day 1

This is Thursday is September 18, 2024.
What day is it a year from now? on September 18, 2025?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 4.
5 days from then. day 9 or day 2 or Tuesday.
25 days from then. day 29 or day 1. 29 = (7)4+1
two days are equivalent up to addition/subtraction of multiple of 7.
11 days from then is day 1 which is Monday!

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1 two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then?

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1 two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then? Next year is not a leap year.

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then. day 29 or day 1. 29 = (7)4 + 1

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1 two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

Day 4+366 or day 370.

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1 two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

Day 4+366 or day 370. Leap year.

This is Thursday is September 18, 2024.

What day is it a year from now? on September 18, 2025?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then. day 29 or day 1. 29 = (7)4 + 1

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

Day 4+366 or day 370. Leap year.

Smallest representation:

This is Thursday is September 18, 2024.
What day is it a year from now? on September 18, 2025?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 4.
5 days from then. day 9 or day 2 or Tuesday.
25 days from then. day 29 or day 1. 29 = (7)4+1
two days are equivalent up to addition/subtraction of multiple of 7.
11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

Day 4+366 or day 370. Leap year.

Smallest representation:

subtract 7 until smaller than 7.

This is Thursday is September 18, 2024. What day is it a year from now? on September 18, 2025? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday. Today: day 4. 5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday! What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+366 or day 370. Leap year. Smallest representation: subtract 7 until smaller than 7. divide and get remainder.

```
This is Thursday is September 18, 2024.
 What day is it a year from now? on September 18, 2025?
   Number days.
    0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 4.
 5 days from then. day 9 or day 2 or Tuesday.
 25 days from then. day 29 or day 1. 29 = (7)4 + 1
   two days are equivalent up to addition/subtraction of multiple of 7.
   11 days from then is day 1 which is Monday!
What day is it a year from then?
 Next year is not a leap year. So 365 days from then.
 Day 4+366 or day 370. Leap year.
Smallest representation:
 subtract 7 until smaller than 7.
 divide and get remainder.
 370/7
```

This is Thursday is September 18, 2024. What day is it a year from now? on September 18, 2025? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday. Today: day 4. 5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday! What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+366 or day 370. Leap year. Smallest representation: subtract 7 until smaller than 7. divide and get remainder. 370/7 leaves quotient of 52 and remainder 6.

This is Thursday is September 18, 2024. What day is it a year from now? on September 18, 2025? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday. Today: day 4. 5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday! What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+366 or day 370. Leap year. Smallest representation: subtract 7 until smaller than 7. divide and get remainder. 370/7 leaves quotient of 52 and remainder 6. 369 = 7(52) + 6

This is Thursday is September 18, 2024. What day is it a year from now? on September 18, 2025? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday. Today: day 4. 5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday! What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+366 or day 370. Leap year. Smallest representation: subtract 7 until smaller than 7. divide and get remainder. 370/7 leaves quotient of 52 and remainder 6. 369 = 7(52) + 6or September 18, 2025 is a Saturday.

This is Thursday is September 18, 2024. What day is it a year from now? on September 18, 2025? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday. Today: day 4. 5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday! What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+366 or day 370. Leap year. Smallest representation: subtract 7 until smaller than 7. divide and get remainder. 370/7 leaves quotient of 52 and remainder 6. 369 = 7(52) + 6or September 18, 2025 is a Saturday.

80 years?

80 years? 20 leap years.

80 years? 20 leap years. 366×20 days

80 years? 20 leap years. 366×20 days 60 regular years.

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4.

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4. It is day $4 + 366 \times 20 + 365 \times 60$.

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4. It is day $4+366 \times 20+365 \times 60$. Equivalent to?

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to? Hmm.
```

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4. It is day $4+366 \times 20+365 \times 60$. Equivalent to? Hmm. What is remainder of 366 when dividing by 7?

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7?

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1

```
80 years? 20 leap years. 366 \times 20 days
 60 regular years. 365 \times 60 days
Today is day 4.
It is day 4+366\times20+365\times60. Equivalent to?
Hmm.
```

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4.

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60$

```
80 years? 20 leap years. 366 \times 20 days
 60 regular years. 365 \times 60 days
Today is day 4.
It is day 4+366\times20+365\times60. Equivalent to?
Hmm.
```

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4.

Get Day: $4+2\times 20+1\times 60=104$ Remainder when dividing by 7?

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4.

Get Day: $4+2\times20+1\times60=104$ Remainder when dividing by 7? $104=14\times7$

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4.

Get Day: $4+2\times 20+1\times 60=104$ Remainder when dividing by 7? $104=14\times 7+6$.

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by $7?\ 52 \times 7 + 2$. What is remainder of 365 when dividing by $7?\ 1$ Today is day 4.

Get Day: $4+2\times20+1\times60=104$ Remainder when dividing by 7? $104=14\times7+6$. Or September 18, 2102 is Saturday!

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4+366 \times 20+365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by $7?\ 52 \times 7 + 2$. What is remainder of 365 when dividing by $7?\ 1$ Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

Remainder when dividing by 7? $104 = 14 \times 7 + 6$.

Or September 18, 2102 is Saturday!

Further Simplify Calculation:

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4. It is day $4+366 \times 20+365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by $7?\ 52 \times 7 + 2$. What is remainder of 365 when dividing by $7?\ 1$ Today is day 4.

Get Day: $4+2\times20+1\times60=104$ Remainder when dividing by 7? $104=14\times7+6$. Or September 18, 2102 is Saturday!

Further Simplify Calculation: 20 has remainder 6 when divided

20 has remainder 6 when divided by 7.

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4. It is day $4 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1 Today is day 4.

Get Day: $4+2\times20+1\times60=104$ Remainder when dividing by 7? $104=14\times7+6$. Or September 18, 2102 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4. It is day $4+366 \times 20+365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

Remainder when dividing by 7? $104 = 14 \times 7 + 6$.

Or September 18, 2102 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $4 + 2 \times 6 + 1 \times 4 = 20$.

Years and years...

```
80 years? 20 leap years. 366 \times 20 days 60 regular years. 365 \times 60 days Today is day 4. It is day 4 + 366 \times 20 + 365 \times 60. Equivalent to?
```

Hmm.

What is remainder of 366 when dividing by $7? 52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

Remainder when dividing by 7? $104 = 14 \times 7 + 6$.

Or September 18, 2102 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $4+2\times 6+1\times 4=20$.

Or Day 6.

Years and years...

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4. It is day $4+366 \times 20+365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

Remainder when dividing by 7? $104 = 14 \times 7 + 6$.

Or September 18, 2102 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $4 + 2 \times 6 + 1 \times 4 = 20$.

Or Day 6. September 18, 2104 is Saturday.

Years and years...

80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4. It is day $4+366 \times 20+365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$. What is remainder of 365 when dividing by 7? 1

Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

Remainder when dividing by 7? $104 = 14 \times 7 + 6$.

Or September 18, 2102 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $4 + 2 \times 6 + 1 \times 4 = 20$.

Or Day 6. September 18, 2104 is Saturday.

"Reduce" at any time in calculation!

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m.

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence or *residue* classes:

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x-y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k. Mod 7 equivalence or residue classes: \{\dots, -7, 0, 7, 14, \dots\}
```

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x-y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k. Mod 7 equivalence or residue classes: \{\dots, -7, 0, 7, 14, \dots\} \{\dots, -6, 1, 8, 15, \dots\}
```

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k. Mod 7 equivalence or residue classes: \{\dots, -7, 0, 7, 14, \dots\} \{\dots, -6, 1, 8, 15, \dots\} ...
```

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

Mod 7 equivalence or *residue* classes: $\{\ldots, -7, 0, 7, 14, \ldots\}$ $\{\ldots, -6, 1, 8, 15, \ldots\}$...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

Mod 7 equivalence or *residue* classes:

$$\{\dots, -7, 0, 7, 14, \dots\} \quad \{\dots, -6, 1, 8, 15, \dots\} \ \dots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

```
or " a \equiv c \pmod{m} and b \equiv d \pmod{m}
```

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

Mod 7 equivalence or *residue* classes:

$$\{\dots, -7, 0, 7, 14, \dots\} \quad \{\dots, -6, 1, 8, 15, \dots\} \ \dots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

```
or " a \equiv c \pmod{m} and b \equiv d \pmod{m}

\implies a + b \equiv c + d \pmod{m} and a \cdot b = c \cdot d \pmod{m}"
```

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence or residue classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k.

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ... or x and y have the same remainder w.r.t. m. ... or x = y + km for some integer k.
```

Mod 7 equivalence or residue classes:

$$\{\dots, -7, 0, 7, 14, \dots\} \quad \{\dots, -6, 1, 8, 15, \dots\} \ \dots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

```
or " a \equiv c \pmod{m} and b \equiv d \pmod{m}

\implies a + b \equiv c + d \pmod{m} and a \cdot b = c \cdot d \pmod{m}"
```

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j.

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

Mod 7 equivalence or residue classes:

$$\{\dots, -7, 0, 7, 14, \dots\} \quad \{\dots, -6, 1, 8, 15, \dots\} \ \dots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

```
or " a \equiv c \pmod{m} and b \equiv d \pmod{m}

\implies a + b \equiv c + d \pmod{m} and a \cdot b = c \cdot d \pmod{m}"
```

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore,

```
x is congruent to y modulo m or "x \equiv y \pmod{m}" if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.
```

Mod 7 equivalence or residue classes:

$$\{\dots, -7, 0, 7, 14, \dots\} \quad \{\dots, -6, 1, 8, 15, \dots\} \ \dots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

```
or " a \equiv c \pmod{m} and b \equiv d \pmod{m}

\implies a + b \equiv c + d \pmod{m} and a \cdot b = c \cdot d \pmod{m}"
```

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence or residue classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

```
or " a \equiv c \pmod{m} and b \equiv d \pmod{m}

\implies a + b \equiv c + d \pmod{m} and a \cdot b = c \cdot d \pmod{m}"
```

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence or residue classes:

$$\{\dots, -7, 0, 7, 14, \dots\} \quad \{\dots, -6, 1, 8, 15, \dots\} \ \dots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

```
or " a \equiv c \pmod{m} and b \equiv d \pmod{m}

\implies a + b \equiv c + d \pmod{m} and a \cdot b = c \cdot d \pmod{m}"
```

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer. $\implies a + b \equiv c + d \pmod{m}$.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence or *residue* classes:

$$\{\dots, -7, 0, 7, 14, \dots\} \quad \{\dots, -6, 1, 8, 15, \dots\} \ \dots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer. $\implies a + b \equiv c + d \pmod{m}$.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m. ...or x and y have the same remainder w.r.t. m. ...or x = y + km for some integer k.

Mod 7 equivalence or residue classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer. $\implies a + b \equiv c + d \pmod{m}$.

Can calculate with representative in $\{0, ..., m-1\}$.

 $x \pmod{m}$ or $\mod(x, m)$

```
x \pmod{m} or \mod(x,m)
- remainder of x divided by m in \{0,\ldots,m-1\}.
```

```
x \pmod{m} or \mod(x,m)
- remainder of x divided by m in \{0,\ldots,m-1\}.
```

```
x\pmod m \text{ or } \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m)=x-\lfloor\frac{x}{m}\rfloor m
```

```
x \pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m \lfloor \frac{x}{m} \rfloor \text{ is quotient.}
```

```
x \pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m \lfloor \frac{x}{m} \rfloor \text{ is quotient.} \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12
```

```
x \pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m \lfloor \frac{x}{m} \rfloor \text{ is quotient.} \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12
```

```
x\pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m)=x-\lfloor\frac{x}{m}\rfloor m \lfloor\frac{x}{m}\rfloor \text{ is quotient.} \mod(29,12)=29-(\lfloor\frac{29}{12}\rfloor)\times 12=29-(2)\times 12=4
```

```
x \pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m \lfloor \frac{x}{m} \rfloor \text{ is quotient.} \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \cancel{X} = 5
```

```
x \pmod m or \mod (x,m) - remainder of x divided by m in \{0,\ldots,m-1\}. \mod (x,m) = x - \lfloor \frac{x}{m} \rfloor m \lfloor \frac{x}{m} \rfloor \text{ is quotient.} \mod (29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \frac{x}{2} = 5 Work in this system.
```

```
x\pmod{m} or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}.  \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m   \lfloor \frac{x}{m} \rfloor \text{ is quotient.}   \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \frac{x}{2} = 5  Work in this system. a \equiv b \pmod{m}.
```

```
x\pmod m or \mod(x,m) - remainder of x divided by m in \{0,\ldots,m-1\}.  \mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m   \lfloor \frac{x}{m} \rfloor \text{ is quotient.}   \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \cancel{x} = 5  Work in this system. a \equiv b \pmod m. Says two integers a and b are equivalent modulo m.
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
 \text{mod}(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
 \text{mod}(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 =
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
  \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3
```

 $6 \equiv 3 + 3 \equiv 3 + 10$

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x, m) = x - \lfloor \frac{x}{m} \rfloor m
  \left|\frac{x}{m}\right| is quotient.
  \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x,m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
  mod(x,m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
  \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 =
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x,m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x,m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
```

Modulus is m

$$6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$$
.

$$6 = 3 + 3 = 3 + 10$$

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
  mod(x,m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
  \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3 = 3 + 10 \pmod{7}.
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x,m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3 = 3 + 10 \pmod{7}.
Generally, not 6 \pmod{7} = 13 \pmod{7}.
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x,m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3 = 3 + 10 \pmod{7}.
Generally, not 6 \pmod{7} = 13 \pmod{7}.
 But probably won't take off points,
```

```
x \pmod{m} or \pmod{(x,m)}
         - remainder of x divided by m in \{0, ..., m-1\}.
 mod(x,m) = x - |\frac{x}{m}|m
  \left|\frac{x}{m}\right| is quotient.
 \mod(29,12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5
Work in this system.
 a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3 = 3 + 10 \pmod{7}.
Generally, not 6 \pmod{7} = 13 \pmod{7}.
 But probably won't take off points, still hard for us to read.
```

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1;

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

$$2\cdot 4x = 2\cdot 5 \pmod{7}$$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

$$2 \cdot 4x = 2 \cdot 5 \pmod{7}$$

$$8x = 10 \pmod{7}$$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$. $2 \cdot 4x = 2 \cdot 5 \pmod{7}$

$$8x = 10 \pmod{7}$$

$$x = 3 \pmod{7}$$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

$$2 \cdot 4x = 2 \cdot 5 \pmod{7}$$

8x = 10 (mod 7)

$$x = 3 \pmod{7}$$

Check!

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

$$2\cdot 4x = 2\cdot 5 \pmod{7}$$

$$8x = 10 \pmod{7}$$

$$x = 3 \pmod{7}$$

Check! $4(3) = 12 = 5 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$. $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4"

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4" \Longrightarrow

 $8k-12\ell$ is a multiple of four for any ℓ and $k \implies$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $x = 3 \pmod{7}$::: Check! $4(3) = 12 = 5 \pmod{7}$.

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4" \Longrightarrow

 $8k - 12\ell$ is a multiple of four for any ℓ and $k \implies 8k \not\equiv 1 \pmod{12}$ for any k.

Poll

Mark true statements.

- (A) Mutliplicative inverse of 2 mod 5 is 3 mod 5.
- (B) The multiplicative inverse of $((n-1) \pmod{n} = ((n-1) \pmod{n})$.
- (C) Multiplicative inverse of 2 mod 5 is 0.5.
- (D) Multiplicative inverse of $4 = -1 \pmod{5}$.
- (E) (-1)x(-1) = 1. Woohoo.
- (F) Multiplicative inverse of 4 mod 5 is 4 mod 5.

Poll

Mark true statements.

- (A) Mutliplicative inverse of 2 mod 5 is 3 mod 5.
- (B) The multiplicative inverse of $((n-1) \pmod{n} = ((n-1) \pmod{n})$.
- (C) Multiplicative inverse of 2 mod 5 is 0.5.
- (D) Multiplicative inverse of $4 = -1 \pmod{5}$.
- (E) (-1)x(-1) = 1. Woohoo.
- (F) Multiplicative inverse of 4 mod 5 is 4 mod 5.
- (C) is false. 0.5 has no meaning in arithmetic modulo 5.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

 \implies One must correspond to 1 modulo m.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim:

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$,

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x, m) = 1$$

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x, m) = 1$$

 \implies Prime factorization of m and x do not contain common primes.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x, m) = 1$$

 \implies Prime factorization of m and x do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x, m) = 1$$

 \implies Prime factorization of *m* and *x* do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

 \implies Prime factorization of *m* and *x* do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

$$\implies (a-b) \geq m$$
.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

$$\gcd(x,m)=1$$

 \implies Prime factorization of *m* and *x* do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

$$\implies$$
 $(a-b) \ge m$. But $a, b \in \{0, ...m-1\}$.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

$$gcd(x,m)=1$$

 \implies Prime factorization of m and x do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

So (a-b) has to be multiple of m.

 \implies $(a-b) \ge m$. But $a, b \in \{0, ...m-1\}$. Contradiction.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

⇒ One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or
$$(a-b)x = km$$
 for some integer k .

$$gcd(x,m)=1$$

 \implies Prime factorization of m and x do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

$$\implies$$
 $(a-b) \ge m$. But $a, b \in \{0, ...m-1\}$. Contradiction.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

...

For x = 4 and m = 6. All products of 4...

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m. ...

For x = 4 and m = 6. All products of 4... S =

23/44

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

```
Proof Sketch: The set S = \{0x, 1x, ..., (m-1)x\} contains y \equiv 1 \mod m if all distinct modulo m.
```

For x = 4 and m = 6. All products of 4... $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\}$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

```
Proof Sketch: The set S = \{0x, 1x, ..., (m-1)x\} contains y \equiv 1 \mod m if all distinct modulo m. ... For x = 4 and m = 6. All products of 4...
```

For X = 4 and M = 6. All products of 4... $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

```
Proof Sketch: The set S = \{0x, 1x, ..., (m-1)x\} contains y \equiv 1 \mod m if all distinct modulo m.
```

```
For x=4 and m=6. All products of 4... S=\{0(4),1(4),2(4),3(4),4(4),5(4)\}=\{0,4,8,12,16,20\} reducing (mod 6) S=\{0,4,2,0,4,2\}
```

```
Proof Sketch: The set S = \{0x, 1x, ..., (m-1)x\} contains y \equiv 1 \mod m if all distinct modulo m.
```

```
For x=4 and m=6. All products of 4... S=\{0(4),1(4),2(4),3(4),4(4),5(4)\}=\{0,4,8,12,16,20\} reducing (mod 6) S=\{0,4,2,0,4,2\}
```

```
Proof Sketch: The set S = \{0x, 1x, ..., (m-1)x\} contains y \equiv 1 \mod m if all distinct modulo m. ...
```

```
For x=4 and m=6. All products of 4... S=\{0(4),1(4),2(4),3(4),4(4),5(4)\}=\{0,4,8,12,16,20\} reducing (mod 6) S=\{0,4,2,0,4,2\} Not distinct.
```

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

For x = 4 and m = 6. All products of 4...

$$\label{eq:S} \mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\} \\ \text{reducing} \pmod{6}$$

$$\textit{S} = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$\label{eq:S} \mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\} \\ \text{reducing} \pmod{6}$$

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• •

For x = 4 and m = 6. All products of 4...

$$\mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

For
$$x = 5$$
 and $m = 6$.

$$S =$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

For
$$x = 5$$
 and $m = 6$.

$$\mathcal{S} = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

For
$$x = 5$$
 and $m = 6$.

$$\mathcal{S} = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• •

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct,

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• • •

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1!

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$\label{eq:S} \mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\} \\ \text{reducing} \pmod{6}$$

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For
$$x = 4$$
 and $m = 6$. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)
$$S = \{0, 4, 2, 0, 4, 2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For
$$x = 5$$
 and $m = 6$.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?)

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

• •

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For x = 4 and m = 6. All products of 4...

$$\label{eq:S} \mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\} \\ \text{reducing} \pmod{6}$$

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

 $S = \{0,4,2,0,4,2\}$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For x = 4 and m = 6. All products of 4...

$$\label{eq:S} \mathcal{S} = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\} \\ \text{reducing} \pmod{6}$$

 $S = \{0,4,2,0,4,2\}$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x ?

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$ What is x? Multiply both sides by 5.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$\textit{S} = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

$$4x = 3 \pmod{6}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

٠.

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

$$4x = 3 \pmod{6}$$
 No solutions. Can't get an odd.

$$4x = 2 \pmod{6}$$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd.

$$4x = 2 \pmod{6}$$
 Two solutions!

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

- -

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0,4,2,0,4,2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd.

$$4x = 2 \pmod{6}$$
 Two solutions! $x = 2,5 \pmod{6}$

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For x = 4 and m = 6. All products of 4...

$$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$$
 reducing (mod 6)

$$S = \{0, 4, 2, 0, 4, 2\}$$

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

$$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x ? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd.

$$4x = 2 \pmod{6}$$
 Two solutions! $x = 2.5 \pmod{6}$

Very different for elements with inverses.

If gcd(x,m) = 1.

If gcd(x,m) = 1. Then the function $f(a) = xa \mod m$ is a bijection.

If gcd(x,m) = 1. Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).)

```
If gcd(x,m) = 1.
```

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).)

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).)

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4},$$

If gcd(x,m) = 1. Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).)

Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

 $f(1) = 3(1) = 3 \pmod{4},$
 $f(2) = 6 = 2 \pmod{4},$

```
If gcd(x,m) = 1.
```

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).) Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

 $f(1) = 3(1) = 3 \pmod{4},$
 $f(2) = 6 = 2 \pmod{4},$
 $f(3) = 1 \pmod{3}.$

Oh yeah.

```
If gcd(x,m) = 1.

Then the function f(a) = xa \mod m is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).)

Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4.

f(1) = 3(1) = 3 \pmod 4,

f(2) = 6 = 2 \pmod 4,

f(3) = 1 \pmod 3.
```

```
If gcd(x,m) = 1.
```

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).) Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

 $f(1) = 3(1) = 3 \pmod{4},$
 $f(2) = 6 = 2 \pmod{4},$
 $f(3) = 1 \pmod{3}.$
Oh yeah, $f(0) = 0 \pmod{3}$

```
If gcd(x,m) = 1.

Then the function f(a) = xa \mod m is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).)

Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4.

f(1) = 3(1) = 3 \pmod 4,

f(2) = 6 = 2 \pmod 4,

f(3) = 1 \pmod 3.

Oh yeah. f(0) = 0 \pmod 3.
```

Bijection

```
If gcd(x,m) = 1.
   Then the function f(a) = xa \mod m is a bijection.
   One to one: there is a unique pre-image(single x where y = f(x).)
   Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4.

f(1) = 3(1) = 3 \pmod 4,

f(2) = 6 = 2 \pmod 4,

f(3) = 1 \pmod 3.

Oh yeah. f(0) = 0 \pmod 3.
```

Bijection \equiv unique pre-image and same size.

```
If gcd(x,m) = 1.
```

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).) Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4.

$$f(1) = 3(1) = 3 \pmod{4}$$

$$f(2) = 6 = 2 \pmod{4}$$

$$f(3) = 1 \pmod{3}$$
.

Oh yeah. $f(0) = 0 \pmod{3}$.

Bijection \equiv unique pre-image and same size.

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).) Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4.

$$f(1) = 3(1) = 3 \pmod{4}$$

$$f(2) = 6 = 2 \pmod{4}$$

$$f(3) = 1 \pmod{3}$$
.

Oh yeah. $f(0) = 0 \pmod{3}$.

 $\mbox{Bijection} \equiv \mbox{unique pre-image and same size}.$

$$x = 2, m = 4.$$

If gcd(x,m) = 1.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).) Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

$$f(1) = 3(1) = 3 \pmod{4}$$
,

$$f(2) = 6 = 2 \pmod{4}$$

$$f(3) = 1 \pmod{3}$$
.

Oh yeah.
$$f(0) = 0 \pmod{3}$$
.

 $\mbox{Bijection} \equiv \mbox{unique pre-image and same size}.$

$$x = 2, m = 4.$$

$$f(1) = 2$$

$$f(2) = 0$$
,

$$f(3) = 2$$

```
If gcd(x,m) = 1.
```

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).) Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

 $f(1) = 3(1) = 3 \pmod{4},$
 $f(2) = 6 = 2 \pmod{4},$
 $f(3) = 1 \pmod{3}.$
Oh yeah. $f(0) = 0 \pmod{3}.$

Bijection \equiv unique pre-image and same size.

$$x = 2, m = 4.$$

 $f(1) = 2,$
 $f(2) = 0,$
 $f(3) = 2$
Oh yeah.

```
If gcd(x,m) = 1.
```

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).) Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

 $f(1) = 3(1) = 3 \pmod{4},$
 $f(2) = 6 = 2 \pmod{4},$
 $f(3) = 1 \pmod{3}.$
Oh yeah. $f(0) = 0 \pmod{3}.$

Bijection \equiv unique pre-image and same size.

$$x = 2, m = 4.$$

 $f(1) = 2,$
 $f(2) = 0,$
 $f(3) = 2$
Oh yeah. $f(0) = 0.$

```
If gcd(x,m) = 1.
```

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image(single x where y = f(x).) Onto: the sizes of the domain and co-domain are the same.

$$x = 3, m = 4.$$

 $f(1) = 3(1) = 3 \pmod{4},$
 $f(2) = 6 = 2 \pmod{4},$
 $f(3) = 1 \pmod{3}.$
Oh yeah. $f(0) = 0 \pmod{3}.$

Bijection \equiv unique pre-image and same size.

All the images are distinct. \implies unique pre-image for any image.

$$x = 2, m = 4.$$

 $f(1) = 2,$
 $f(2) = 0,$
 $f(3) = 2$
Oh yeah. $f(0) = 0.$

Not a bijection.

Poll

Which is bijection?

- (A) f(x) = x for domain and range being \mathbb{R}
- (B) $f(x) = ax \pmod{n}$ for $x \in \{0, ..., n-1\}$ and gcd(a, n) = 2
- (C) $f(x) = ax \pmod{n}$ for $x \in \{0, ..., n-1\}$ and gcd(a, n) = 1

Poll

Which is bijection?

- (A) f(x) = x for domain and range being \mathbb{R}
- (B) $f(x) = ax \pmod{n}$ for $x \in \{0, ..., n-1\}$ and gcd(a, n) = 2
- (C) $f(x) = ax \pmod{n}$ for $x \in \{0, ..., n-1\}$ and gcd(a, n) = 1
- (B) is not.

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume the inverse of a is x^{-1} , or ax = 1 + km.

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume the inverse of a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume the inverse of a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thus,

```
Thm: If gcd(x,m) \neq 1 then x has no multiplicative inverse modulo m.
```

Assume the inverse of a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thus,

a(nd) =

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume the inverse of a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thus,

 $a(nd) = 1 + k\ell d$

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume the inverse of a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thus,

 $a(nd) = 1 + k\ell d$ or

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume the inverse of a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thus,

$$a(nd) = 1 + k\ell d$$
 or

$$d(na-k\ell)=1.$$

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume the inverse of a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thus,

$$a(nd) = 1 + k\ell d$$
 or

$$d(na-k\ell)=1.$$

But d > 1 and $z = (na - k\ell) \in \mathbb{Z}$.

```
Thm: If gcd(x,m) \neq 1 then x has no multiplicative inverse modulo m. Assume the inverse of a is x^{-1}, or ax = 1 + km. x = nd and m = \ell d for d > 1. Thus, a(nd) = 1 + k\ell d \text{ or } d(na - k\ell) = 1.
```

But d > 1 and $z = (na - k\ell) \in \mathbb{Z}$. so $dz \neq 1$ and dz = 1. Contradiction.

Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume the inverse of a is x^{-1} , or ax = 1 + km.

x = nd and $m = \ell d$ for d > 1.

Thus,

$$a(nd) = 1 + k\ell d$$
 or

$$d(na-k\ell)=1.$$

But d > 1 and $z = (na - k\ell) \in \mathbb{Z}$.

so $dz \neq 1$ and dz = 1. Contradiction.

26/44

How to find the inverse?

How to find the inverse? How to find if x has an inverse modulo m?

How to find the inverse? How to find if x has an inverse modulo m? Find gcd (x, m).

How to find the inverse? How to find if x has an inverse modulo m? Find gcd (x, m). Greater than 1?

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd(x, m).

Greater than 1? No multiplicative inverse.

Equal to 1?

How to find the inverse? How to find **if** x has an inverse modulo m? Find gcd (x, m). Greater than 1? No multiplicative inverse.

27/44

How to find the inverse?

How to find **if** *x* has an inverse modulo *m*?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

How to find the inverse?

How to find **if** *x* has an inverse modulo *m*?

Find gcd(x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm:

How to find the inverse?

How to find **if** *x* has an inverse modulo *m*?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

How to find the inverse?

How to find **if** *x* has an inverse modulo *m*?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

Very slow.

How to find the inverse?

How to find **if** *x* has an inverse modulo *m*?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

Very slow.

Next up.

Next up.

Next up.

Euclid's Algorithm.

Next up.

Euclid's Algorithm.

Runtime.

Next up.

Euclid's Algorithm.

Runtime.

Euclid's Extended Algorithm.

Does 2 have an inverse mod 8?

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9?

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9?

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k\in\mathbb{N}$. $3=\gcd(6,9)!$

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. $3 = \gcd(6,9)!$

x has an inverse modulo m if and only if

- Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.
- Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.
- Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!
- x has an inverse modulo m if and only if gcd(x,m) > 1?

- Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.
- Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.
- Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!
- x has an inverse modulo m if and only if gcd(x,m) > 1? No. gcd(x,m) = 1?

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

x has an inverse modulo m if and only if gcd(x,m) > 1? No. gcd(x,m) = 1? Yes.

Refresh

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

x has an inverse modulo m if and only if gcd(x,m) > 1? No. gcd(x,m) = 1? Yes.

Now what?: Compute gcd!

Refresh

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

x has an inverse modulo m if and only if gcd(x,m) > 1? No. gcd(x,m) = 1? Yes.

Now what?: Compute gcd! Compute Inverse modulo *m*.

Refresh

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$.

Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$.

Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

x has an inverse modulo m if and only if gcd(x,m) > 1? No. gcd(x,m) = 1? Yes.

Now what?: Compute gcd! Compute Inverse modulo *m*.

Notation: d|x means "d divides x" or

Notation: d|x means "d divides x" or x = kd for some integer k.

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact?

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes?

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Proof: d|x and d|y or

Notation: d|x means "d divides x" or

x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

$$\implies x - y = kd - \ell d$$

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

$$\implies x - y = kd - \ell d = (k - \ell)d$$

```
Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y). Is it a fact? Yes? No?

Proof: d|x and d|y or x = \ell d and y = kd
```

 $\implies x - y = kd - \ell d = (k - \ell)d \implies d(x - y)$

Notation: d|x means "d divides x" or x = kd for some integer k.

Fact: If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

$$\implies x - y = kd - \ell d = (k - \ell)d \implies d|(x - y)$$

Notation: d|x means "d divides x" or

Notation: d|x means "d divides x" or x = kd for some integer k.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

$$mod(x,y) = x - \lfloor x/y \rfloor \cdot y$$

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

$$mod(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - s \cdot y$ for integer s

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

$$\begin{array}{lll} \operatorname{mod} (x,y) & = & x - \lfloor x/y \rfloor \cdot y \\ & = & x - s \cdot y & \text{for integer } s \\ & = & kd - s\ell d & \text{for integers } k, \ell \text{ where } x = kd \text{ and } y = \ell d \end{array}$$

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - s \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - s \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - s \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

mod
$$(x,y)$$
 = $x - \lfloor x/y \rfloor \cdot y$
= $x - s \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - s \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - s \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - s \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home. □ish.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - s \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d|\mod(x,y)$ then d|y and d|x. **Proof...:** Similar. Try this at home.

□ish.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - s \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home.

□ish.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Proof: x and y have **same** set of common divisors as x and mod(x,y) by Lemma 1 and 2.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - s \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home.

□ish.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Proof: x and y have **same** set of common divisors as x and mod (x, y) by Lemma 1 and 2.

Same common divisors \implies largest is the same.

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d|\mod(x,y)$.

Proof:

$$\operatorname{mod}(x,y) = x - \lfloor x/y \rfloor \cdot y$$

= $x - s \cdot y$ for integer s
= $kd - s\ell d$ for integers k, ℓ where $x = kd$ and $y = \ell d$
= $(k - s\ell)d$

Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x,y)$ then d|y and d|x.

Proof...: Similar. Try this at home.

□ish.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Proof: x and y have **same** set of common divisors as x and mod (x,y) by Lemma 1 and 2.

Same common divisors \implies largest is the same.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)?

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7

GCD Mod Corollary: $gcd(x,y) = gcd(y, \mod(x,y)).$

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)?

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
```

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
GCD Mod Corollary: \gcd(x,y) = \gcd(y, \mod(x,y)).

Hey, what's \gcd(7,0)? 7 since 7 divides 7 and 7 divides 0

What's \gcd(x,0)? x

(define (euclid x y)

(if (= y 0)

x

(euclid y (mod x y)))) ***
```

```
GCD Mod Corollary: gcd(x,y) = gcd(y, \mod(x,y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0

What's gcd(x,0)? x

(define (euclid x y)

(if (= y 0)

x

(euclid y (mod x y)))) ***

Theorem: (euclid x y) = gcd(x,y) if x > y.
```

```
GCD Mod Corollary: gcd(x,y) = gcd(y, \mod(x,y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0

What's gcd(x,0)? x

(define (euclid x y)

(if (= y 0)

x

(euclid y (mod x y)))) ***

Theorem: (euclid x y) = gcd(x,y) if x > y.
```

Proof: Use Strong Induction.

```
GCD Mod Corollary: gcd(x,y) = gcd(y, \mod(x,y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0

What's gcd(x,0)? x

(define (euclid x y)

(if (= y 0)

x

(euclid y (mod x y)))) ***

Theorem: (euclid x y) = gcd(x,y) if x > y.
```

Proof: Use Strong Induction.

Base Case: y = 0, "x divides y and x"

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
(define (euclid x y)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x > y.
Proof: Use Strong Induction.
Base Case: y = 0, "x divides y and x"
           \implies "x is common divisor and clearly largest."
```

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
(define (euclid x y)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x > y.
Proof: Use Strong Induction.
Base Case: y = 0, "x divides y and x"
           \implies "x is common divisor and clearly largest."
Induction Step: mod(x, y) < y < x \text{ when } x > y
```

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
(define (euclid x y)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x > y.
Proof: Use Strong Induction.
Base Case: y = 0, "x divides y and x"
            \implies "x is common divisor and clearly largest."
Induction Step: mod(x, y) < y \le x \text{ when } x \ge y
call in line (***) meets conditions plus arguments "smaller"
```

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
(define (euclid x y)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x > y.
Proof: Use Strong Induction.
Base Case: y = 0, "x divides y and x"
            \implies "x is common divisor and clearly largest."
Induction Step: mod(x, y) < y \le x \text{ when } x \ge y
```

call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis

```
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
(define (euclid x y)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x > y.
Proof: Use Strong Induction.
Base Case: y = 0, "x divides y and x"
            \implies "x is common divisor and clearly largest."
Induction Step: mod(x, y) < y \le x \text{ when } x \ge y
call in line (***) meets conditions plus arguments "smaller"
  and by strong induction hypothesis
  computes gcd(y, mod(x, y))
```

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
(define (euclid x y)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x > y.
Proof: Use Strong Induction.
Base Case: y = 0, "x divides y and x"
            \implies "x is common divisor and clearly largest."
Induction Step: mod(x, y) < y \le x \text{ when } x \ge y
call in line (***) meets conditions plus arguments "smaller"
  and by strong induction hypothesis
  computes gcd(y, mod(x, y))
which is gcd(x, y) by GCD Mod Corollary.
```

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)?
(define (euclid x y)
  (if (= y 0)
     X
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x > y.
Proof: Use Strong Induction.
Base Case: y = 0, "x divides y and x"
            \implies "x is common divisor and clearly largest."
Induction Step: mod(x, y) < y \le x \text{ when } x \ge y
call in line (***) meets conditions plus arguments "smaller"
  and by strong induction hypothesis
  computes gcd(y, mod(x, y))
which is gcd(x, y) by GCD Mod Corollary.
```

Before discussing running time of gcd procedure...

Before discussing running time of gcd procedure... What is the value of 1,000,000?

Before discussing running time of gcd procedure... What is the value of 1,000,000? one million or 1,000,000!

Before discussing running time of gcd procedure... What is the value of 1,000,000? one million or 1,000,000! What is the "size" of 1,000,000?

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the "size" of 1,000,000?

Number of digits in base 10: 7.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the "size" of 1,000,000?

Number of digits in base 10: 7.

Number of bits (a digit in base 2): 21.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the "size" of 1,000,000?

Number of digits in base 10: 7.

Number of bits (a digit in base 2): 21.

For a number *x*, what is its size in bits?

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the "size" of 1,000,000?

Number of digits in base 10: 7.

Number of bits (a digit in base 2): 21.

For a number *x*, what is its size in bits?

$$n = b(x) \approx \log_2 x$$

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the "size" of 1,000,000?

Number of digits in base 10: 7.

Number of bits (a digit in base 2): 21.

For a number *x*, what is its size in bits?

$$n = b(x) \approx \log_2 x$$

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$.

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good?

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots, y/2\}$?

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots, y/2\}$? Check 2,

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots, y/2\}$? Check 2, check 3,

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots, y/2\}$? Check 2, check 3, check 4,

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots, y/2\}$? Check 2, check 3, check 4, check 5 . . . , check y/2.

Theorem: (euclid x y) uses 2n "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots, y/2\}$? Check 2, check 3, check 4, check $5 \dots$, check y/2.

```
Theorem: (euclid x y) uses 2n "divisions" where n = b(x) \approx \log_2 x. Is this good? Better than trying all numbers in \{2, \dots, y/2\}? Check 2, check 3, check 4, check 5 \dots, check y/2. If y \approx x
```

```
Theorem: (euclid x y) uses 2n "divisions" where n = b(x) \approx \log_2 x. Is this good? Better than trying all numbers in \{2, \dots, y/2\}? Check 2, check 3, check 4, check 5 \dots, check y/2. If y \approx x roughly y uses n bits
```

```
Theorem: (euclid x y) uses 2n "divisions" where n = b(x) \approx \log_2 x. Is this good? Better than trying all numbers in \{2, \dots, y/2\}? Check 2, check 3, check 4, check 5 \dots, check y/2. If y \approx x roughly y uses n bits ... 2^{n-1} divisions! Exponential dependence on size!
```

```
Theorem: (euclid x y) uses 2n "divisions" where n = b(x) \approx \log_2 x. Is this good? Better than trying all numbers in \{2, \dots, y/2\}? Check 2, check 3, check 4, check 5 \dots, check y/2. If y \approx x roughly y uses n bits ... 2^{n-1} divisions! Exponential dependence on size! 101 bit number.
```

```
Theorem: (euclid x y) uses 2n "divisions" where n = b(x) \approx \log_2 x. Is this good? Better than trying all numbers in \{2, \dots, y/2\}? Check 2, check 3, check 4, check 5 \dots, check y/2. If y \approx x roughly y uses n bits ... 2^{n-1} divisions! Exponential dependence on size! 101 bit number. 2^{100} \approx 10^{30} = "million, trillion" divisions!
```

```
Theorem: (euclid x y) uses 2n "divisions" where n = b(x) \approx \log_2 x. Is this good? Better than trying all numbers in \{2, \dots, y/2\}? Check 2, check 3, check 4, check 5 \dots, check y/2. If y \approx x roughly y uses n bits ... 2^{n-1} divisions! Exponential dependence on size! 101 bit number. 2^{100} \approx 10^{30} = "million, trillion, trillion" divisions! 2n is much faster!
```

Euclid procedure is fast.

```
Theorem: (euclid x y) uses 2n "divisions" where n = b(x) \approx \log_2 x. Is this good? Better than trying all numbers in \{2, \dots, y/2\}? Check 2, check 3, check 4, check 5 \dots, check y/2. If y \approx x roughly y uses n bits ... 2^{n-1} divisions! Exponential dependence on size! 101 bit number. 2^{100} \approx 10^{30} = "million, trillion, trillion" divisions! 2n is much faster! .. roughly 200 divisions.
```

Poll.

Assume $\log_2 1,000,000$ is 20 to the nearest integer. Mark what's true.

Poll.

Assume $\log_2 1,000,000$ is 20 to the nearest integer. Mark what's true.

- (A) The size of 1,000,000 is 20 bits.
- (B) The size of 1,000,000 is one million.
- (C) The value of 1,000,000 is one million.
- (D) The value of 1,000,000 is 20.

Poll.

Assume $\log_2 1,000,000$ is 20 to the nearest integer. Mark what's true.

- (A) The size of 1,000,000 is 20 bits.
- (B) The size of 1,000,000 is one million.
- (C) The value of 1,000,000 is one million.
- (D) The value of 1,000,000 is 20.
- (A) and (C).

Poll

Which are correct?

- (A) gcd(700,568) = gcd(568,132)
- (B) gcd(8,3) = gcd(3,2)
- (C) gcd(8,3) = 1
- (D) gcd(4,0) = 4

Poll

Which are correct?

- (A) gcd(700,568) = gcd(568,132)
- (B) gcd(8,3) = gcd(3,2)
- (C) gcd(8,3) = 1
- (D) gcd(4,0) = 4

Trying everything

Trying everything Check 2, check 3, check 4, check $5 \dots$, check y/2.

```
Trying everything Check 2, check 3, check 4, check 5 . . . , check y/2. "(gcd x y)" at work.
```

euclid(700,568)

```
euclid(700,568)
euclid(568, 132)
```

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
```

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
```

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
```

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
euclid(4, 0)
```

```
euclid(700,568)
  euclid(568, 132)
    euclid(132, 40)
    euclid(40, 12)
     euclid(12, 4)
        euclid(4, 0)
        4
```

Trying everything Check 2, check 3, check 4, check 5 ..., check y/2. "(gcd x y)" at work.

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
euclid(4, 0)
```

Notice: The first argument decreases rapidly.

Trying everything Check 2, check 3, check 4, check 5 . . . , check y/2. "(gcd x y)" at work.

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
euclid(4, 0)
```

Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls.

Trying everything Check 2, check 3, check 4, check 5 . . . , check y/2. "(gcd x y)" at work.

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
euclid(4, 0)
```

Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls.

(The second is less than the first.)

```
(define (euclid x y)
  (if (= y 0)
         x
         (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

```
(define (euclid x y)
  (if (= y 0)
          x
          (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

```
(define (euclid x y)
  (if (= y 0)
         x
         (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

After $2\log_2 x = O(n)$ recursive calls, argument x is 1 bit number.

```
(define (euclid x y)
  (if (= y 0)
         x
         (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

After $2\log_2 x = O(n)$ recursive calls, argument x is 1 bit number. One more recursive call to finish.

```
(define (euclid x y)
  (if (= y 0)
         x
         (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

After $2\log_2 x = O(n)$ recursive calls, argument x is 1 bit number. One more recursive call to finish.

1 division per recursive call.

```
(define (euclid x y)
  (if (= y 0)
          x
          (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

After $2\log_2 x = O(n)$ recursive calls, argument x is 1 bit number. One more recursive call to finish.

1 division per recursive call.

O(n) divisions.

```
(define (euclid x y)
  (if (= y 0)
         x
         (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \implies$ true in one recursive call;

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \implies$ true in one recursive call;

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \implies$ true in one recursive call;

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x,y) \le x/2$."

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \implies$ true in one recursive call;

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x, y) \le x/2$."

mod(x,y) is second argument in next recursive call,

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \implies$ true in one recursive call;

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x,y) \le x/2$."

mod(x,y) is second argument in next recursive call, and becomes the first argument in the next one.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \implies$ true in one recursive call;

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x,y) \le x/2$."

mod(x,y) is second argument in next recursive call, and becomes the first argument in the next one.

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \implies$ true in one recursive call:

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x,y) \le x/2$."

mod(x,y) is second argument in next recursive call, and becomes the first argument in the next one.

$$\lfloor \frac{x}{y} \rfloor = 1,$$

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \Rightarrow$ true in one recursive call:

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x,y) \le x/2$."

mod(x,y) is second argument in next recursive call, and becomes the first argument in the next one.

$$\lfloor \frac{x}{y} \rfloor = 1,$$

 $mod(x, y) = x - y \lfloor \frac{x}{y} \rfloor =$

```
(define (euclid x y)
  (if (= y 0)
          x
          (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is y

⇒ true in one recursive call;

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x,y) \le x/2$."

mod(x,y) is second argument in next recursive call, and becomes the first argument in the next one.

$$\lfloor \frac{x}{y} \rfloor = 1,$$

 $\text{mod}(x, y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \leq x - x/2$

Runtime Proof (continued.)

```
(define (euclid x y)
  (if (= y 0)
          x
          (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is $y \implies$ true in one recursive call:

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x,y) \le x/2$."

mod(x,y) is second argument in next recursive call, and becomes the first argument in the next one.

When $y \ge x/2$, then

$$\lfloor \frac{x}{y} \rfloor = 1,$$

 $\text{mod}(x, y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \leq x - x/2 = x/2$

Runtime Proof (continued.)

```
(define (euclid x y)
  (if (= y 0)
         x
         (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is y

 \implies true in one recursive call;

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x,y) \le x/2$."

mod(x,y) is second argument in next recursive call, and becomes the first argument in the next one.

When $y \ge x/2$, then

$$\left\lfloor \frac{x}{y} \right\rfloor = 1,$$

$$mod(x,y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \leq x - x/2 = x/2$$

Remark

```
(define (euclid x y) (if (= y 0) x (euclid y (-x y))))
```

Remark

```
(define (euclid x y) (if (= y 0) x (euclid y (-x y))))
```

Didn't necessarily need to do gcd.

Remark

```
(define (euclid x y) (if (= y 0) x (euclid y (-x y))))
```

Didn't necessarily need to do gcd.

Runtime proof still works.

Finding an inverse?

We showed how to efficiently tell if there is an inverse.

Finding an inverse?

We showed how to efficiently tell if there is an inverse.

Extend euclid to find inverse.

Euclid's GCD algorithm.

```
(define (euclid x y)
  (if (= y 0)
          x
          (euclid y (mod x y))))
```

Euclid's GCD algorithm.

```
(define (euclid x y)
  (if (= y 0)
         x
         (euclid y (mod x y))))
```

Computes the gcd(x, y) in O(n) divisions.

Euclid's GCD algorithm.

```
(define (euclid x y)
  (if (= y 0)
          x
          (euclid y (mod x y))))
```

Computes the gcd(x, y) in O(n) divisions.

For x and m, if gcd(x, m) = 1 then x has an inverse modulo m.

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.

Multiplicative Inverse.

GCD algorithm used to tell **if** there is a multiplicative inverse.

How do we **find** a multiplicative inverse?

Multiplicative Inverse.

GCD algorithm used to tell **if** there is a multiplicative inverse. How do we **find** a multiplicative inverse? Tuesday

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

For
$$a \equiv b \pmod{N}$$
, and $c \equiv d \pmod{N}$, $ac = bd \pmod{N}$ and $a+b=c+d \pmod{N}$.

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a + b = c + d \pmod{N}.
```

Division?

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse.

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$.

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if gcd(a, N) = 1.

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if gcd(a, N) = 1.

Why?

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if gcd(a, N) = 1.

Why? If: $f(x) = ax \pmod{N}$ is a bijection on $\{1, ..., N-1\}$.

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if gcd(a, N) = 1.

```
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}. ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N.
```

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N}, ac = bd \pmod{N} and a+b=c+d \pmod{N}.
```

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if gcd(a, N) = 1.

```
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}. ax - ay = 0 \pmod{N} \implies a(x-y) is a multiple of N. If gcd(a, N) = 1,
```

```
Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
For a \equiv b \pmod{N}, and c \equiv d \pmod{N},
 ac = bd \pmod{N} and a + b = c + d \pmod{N}.
Division? Multiply by multiplicative inverse.
 a \pmod{N} has multiplicative inverse, a^{-1} \pmod{N}.
  If and only if gcd(a, N) = 1.
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}.
  ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N.
  If gcd(a, N) = 1,
   then (x - y) must contain all primes in prime factorization of N,
```

```
Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
For a \equiv b \pmod{N}, and c \equiv d \pmod{N},
 ac = bd \pmod{N} and a+b=c+d \pmod{N}.
Division? Multiply by multiplicative inverse.
 a \pmod{N} has multiplicative inverse, a^{-1} \pmod{N}.
 If and only if gcd(a, N) = 1.
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}.
 ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N.
  If acd(a, N) = 1,
   then (x - y) must contain all primes in prime factorization of N,
   and is therefore be bigger than N.
```

```
Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
For a \equiv b \pmod{N}, and c \equiv d \pmod{N},
 ac = bd \pmod{N} and a+b=c+d \pmod{N}.
Division? Multiply by multiplicative inverse.
 a \pmod{N} has multiplicative inverse, a^{-1} \pmod{N}.
 If and only if gcd(a, N) = 1.
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}.
 ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N.
 If acd(a, N) = 1,
   then (x - y) must contain all primes in prime factorization of N,
   and is therefore be bigger than N.
Only if: For a = xd and N = yd,
```

```
Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
For a \equiv b \pmod{N}, and c \equiv d \pmod{N},
 ac = bd \pmod{N} and a+b=c+d \pmod{N}.
Division? Multiply by multiplicative inverse.
 a \pmod{N} has multiplicative inverse, a^{-1} \pmod{N}.
 If and only if gcd(a, N) = 1.
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}.
 ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N.
 If acd(a, N) = 1,
   then (x - y) must contain all primes in prime factorization of N,
   and is therefore be bigger than N.
Only if: For a = xd and N = yd,
   any ma + kN = d(mx - ky) or is a multiple of d,
 and is not 1.
```

```
Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
For a \equiv b \pmod{N}, and c \equiv d \pmod{N},
 ac = bd \pmod{N} and a+b=c+d \pmod{N}.
Division? Multiply by multiplicative inverse.
 a \pmod{N} has multiplicative inverse, a^{-1} \pmod{N}.
 If and only if gcd(a, N) = 1.
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}.
 ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N.
 If acd(a, N) = 1,
   then (x - y) must contain all primes in prime factorization of N,
   and is therefore be bigger than N.
Only if: For a = xd and N = yd,
   any ma + kN = d(mx - ky) or is a multiple of d,
 and is not 1.
Euclid's Alg: gcd(x, y) = gcd(y \mod x, x)
```

```
Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
For a \equiv b \pmod{N}, and c \equiv d \pmod{N},
 ac = bd \pmod{N} and a+b=c+d \pmod{N}.
Division? Multiply by multiplicative inverse.
 a \pmod{N} has multiplicative inverse, a^{-1} \pmod{N}.
 If and only if gcd(a, N) = 1.
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}.
 ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N.
 If acd(a, N) = 1,
   then (x - y) must contain all primes in prime factorization of N,
   and is therefore be bigger than N.
Only if: For a = xd and N = yd,
   any ma + kN = d(mx - ky) or is a multiple of d,
 and is not 1.
Euclid's Alg: gcd(x, y) = gcd(y \mod x, x)
```

Fast cuz value drops by a factor of two every two recursive calls.

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

For
$$a \equiv b \pmod{N}$$
, and $c \equiv d \pmod{N}$, $ac = bd \pmod{N}$ and $a+b=c+d \pmod{N}$.

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$.

If and only if gcd(a, N) = 1.

Why? If:
$$f(x) = ax \pmod{N}$$
 is a bijection on $\{1, ..., N-1\}$. $ax - ay = 0 \pmod{N} \implies a(x-y)$ is a multiple of N . If $gcd(a, N) = 1$,

then (x - y) must contain all primes in prime factorization of N, and is therefore be bigger than N.

Only if: For a = xd and N = yd, any ma + kN = d(mx - ky) or is a multiple of d, and is not 1.

Euclid's Alg: $gcd(x,y) = gcd(y \mod x,x)$ Fast cuz value drops by a factor of two every two recursive calls.

Know if there is an inverse, but how do we find it?

Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k.

For
$$a \equiv b \pmod{N}$$
, and $c \equiv d \pmod{N}$, $ac = bd \pmod{N}$ and $a+b=c+d \pmod{N}$.

Division? Multiply by multiplicative inverse. $a \pmod{N}$ has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if gcd(a, N) = 1.

Why? If: $f(x) = ax \pmod{N}$ is a bijection on $\{1, ..., N-1\}$. $ax - ay = 0 \pmod{N} \implies a(x - y)$ is a multiple of N. If gcd(a, N) = 1,

then (x - y) must contain all primes in prime factorization of N, and is therefore be bigger than N.

Only if: For a = xd and N = yd, any ma + kN = d(mx - ky) or is a multiple of d, and is not 1.

Euclid's Alg: $gcd(x,y) = gcd(y \mod x,x)$ Fast cuz value drops by a factor of two every two recursive calls.

Know if there is an inverse, but how do we find it? On Tuesday!